• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study and optimization of new differential space-time modulation schemes based on the Weyl group for the second generation of MIMO systems / Etude et optimisation de nouveaux schémas de codage temps-espace différentiels basés sur le groupe de Weyl pour la seconde génération de systèmes MIMO

Ji, Hui 09 November 2015 (has links)
Actuellement, l’étude des systèmes multi-antennaires MIMO (Multiple Input Multiple Output) est orientée dans beaucoup de cas vers l’augmentation considérable du nombre d’antennes de la station de base (« massive MIMO », « large-scale MIMO »), afin notamment d’augmenter la capacité de transmission, réduire l’énergie consommée par bit transmis, exploiter la dimension spatiale du canal de propagation, diminuer l’influence des évanouissements, etc. Pour les systèmes MIMO à bande étroite ou ceux utilisant la technique OFDM (Orthogonal Frequency Division Multiplex), le canal de propagation (ou les sous-canaux correspondants à chaque sous-porteuse d’un système OFDM) sont pratiquement plats (non-sélectifs en fréquence), ce qui revient à considérer la réponse fréquentielle de chaque canal SISO invariante par rapport à la fréquence mais variante dans le temps. Ainsi, le canal de propagation MIMO peut être caractérisé en bande de base par une matrice dont les coefficients sont des nombres complexes. Les systèmes MIMO cohérents nécessitent pour pouvoir démoduler le signal en réception de disposer de la connaissance de cette matrice de canal, donc le sondage périodique, en temps réel, du canal de propagation. L’augmentation du nombre d’antennes et la variation dans le temps, parfois assez rapide, du canal de propagation, rend ce sondage de canal difficile, voire impossible. Il est donc intéressant d’étudier des systèmes MIMO différentiels qui n’ont pas besoin de connaître la matrice de canal. Pour un bon fonctionnement de ces systèmes, la seule contrainte est que la matrice de canal varie peu pendant la transmission de deux matrices d’information successives. Le sujet de cette thèse concerne l’étude et l’analyse de nouveaux systèmes MIMO différentiels. On considère des systèmes à 2, 4 et 8 antennes d’émission, mais la méthode utilisée peut être étendue à des systèmes MIMO avec 2n antennes d’émission, le nombre d’antennes de réception étant quelconque. Pour les systèmes MIMO avec 2 antennes d’émission qui ont été étudiés dans le cadre de cette thèse, les matrices d’information sont des éléments du groupe de Weyl. Pour les systèmes avec 2n antennes d’émission, (n ≥ 2), les matrices utilisées sont obtenues en effectuant des produits de Kronecker des matrices unitaires du groupe de Weyl. Pour chaque nombre d’antennes d’émission on identifie d’abord le nombre de matrices disponibles et on détermine la valeur maximale de l’efficacité spectrale. Pour chaque valeur de l’efficacité spectrale on détermine les meilleurs sous-ensembles de matrices d’information à utiliser (selon le spectre des distances ou le critère du produit de diversité). On optimise ensuite la correspondance ou mapping entre les vecteurs binaires et les matrices d’information. Enfin, on détermine par simulation les performances des systèmes MIMO différentiels ainsi obtenus et on les compare avec celles des systèmes similaires existants. […] / At present, the study of multi-antenna systems MIMO (Multiple Input Multiple Output) is developed in many cases to intensively increase the number of base station antennas («massive MIMO», «largescale MIMO»), particularly in order to increase the transmission capacity, reduce energy consumed per bit transmitted, exploit the spatial dimension of the propagation channel, reduce the influence of fading, etc. For MIMO systems with narrowband or those using OFDM technique (Orthogonal Frequency Division Multiplex), the propagation channel (or the sub-channels corresponding to each sub-carrier of an OFDM system) are substantially flat (frequency non-selective). In this case the frequency response of each SISO channel is invariant with respect to frequency, but variant in time. Furthermore, the MIMO propagation channel can be characterized in baseband by a matrix whose coefficients are complex numbers. Coherent MIMO systems need to have the knowledge of the channel matrix to be able to demodulate the received signal. Therefore, periodic pilot should be transmitted and received to estimate the channel matrix in real time. The increase of the number of antennas and the change of the propagation channel over time, sometimes quite fast, makes the channel estimation quite difficult or impossible. It is therefore interesting to study differential MIMO systems that do not need to know the channel matrix. For proper operation of these systems, the only constraint is that the channel matrix varies slightly during the transmission of two successive information matrices. The subject of this thesis is the study and analysis of new differential MIMO systems. We consider systems with 2, 4 and 8 transmit antennas, but the method can be extended to MIMO systems with 2n transmit antennas, the number of receive antennas can be any positive integer. For MIMO systems with two transmit antennas that were studied in this thesis, information matrices are elements of the Weyl group. For systems with 2n (n ≥ 2) transmit antennas, the matrices used are obtained by performing the Kronecker product of the unitary matrices in Weyl group. For each number of transmit antennas, we first identify the number of available matrices and the maximum value of the spectral efficiency. For each value of the spectral efficiency, we then determine the best subsets of information matrix to use (depending on the spectrum of the distances or the diversity product criterion). Then we optimize the correspondence or mapping between binary vectors and matrices of information. Finally, the performance of differential MIMO systems are obtained by simulation and compared with those of existing similar systems. […]

Page generated in 0.025 seconds