• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exact, Approximate, and Online Algorithms for Optimization Problems Arising in DVD Assignment

Pearson, James Ross January 2009 (has links)
Zip.ca is an online DVD rental company that faces two major operational problems: calculation of the assignment of DVDs to customers every thirty minutes throughout the day and purchasing of new inventory in regular intervals. In this thesis, we model these two problems and develop algorithms to solve them. In doing so, we encounter many theoretical problems that are both applicable to Zip’s operations and intrinsically interesting problems independent of the application. First, we note that the assignment problem facing Zip is inherently in an online setting. With returns of DVDs being processed throughout the day, the dataset is constantly changing. Although the ideal solution would be to wait until the end of the day to make decisions, physical work load capacities prevent this. For this reason we discuss two online problems, online 0-1 budgeted matching and the budgeted Adwords auction. We present a 1/(2 w_max/w_min)-competitive algorithm for the online 0-1 budgeted matching problem, and prove that this is the best possible competitive ratio possible for a wide class of algorithms. We also give a (1− (S+1)/(S+e) )-competitive algorithm for the budgeted Adwords auction as the size of the bids and cost get small compared to the budgets, where S is the ratio of the highest and lowest ratios of bids to costs. We suggest a linear programming approach to solve Zip’s assignment problem. We develop an integer program that models the B-matching instance with additional constraints of concern to Zip, and prove that this integer program belongs to a larger class of integer programs that has totally unimodular constraint matrices. Thus, the assignment problem can be solved to optimality every thirty minutes. We additionally create a test environment to check daily performance, and provide real-time implementation results, showing a marked improvement over Zip’s old algorithm. We show that Zip’s purchasing problem can be modeled by the matching augmentation problem defined as follows. Given a graph with vertex capacities and costs, edge weights, and budget C, find a purchasing of additional node capacity of cost at most C that admits a B-matching of maximum weight. We give a PTAS for this problem, and then present a special case that is polynomial time solvable that still models Zip’s purchasing problem, under the assumption of uniform costs. We then extend the augmentation idea to matroids and present matroid augmentation, matroid knapsack, and matroid intersection knapsack, three NP-hard problems. We give an FPTAS for matroid knapsack by dynamic programming, PTASes for the other two, and demonstrate applications of these problems.
2

Exact, Approximate, and Online Algorithms for Optimization Problems Arising in DVD Assignment

Pearson, James Ross January 2009 (has links)
Zip.ca is an online DVD rental company that faces two major operational problems: calculation of the assignment of DVDs to customers every thirty minutes throughout the day and purchasing of new inventory in regular intervals. In this thesis, we model these two problems and develop algorithms to solve them. In doing so, we encounter many theoretical problems that are both applicable to Zip’s operations and intrinsically interesting problems independent of the application. First, we note that the assignment problem facing Zip is inherently in an online setting. With returns of DVDs being processed throughout the day, the dataset is constantly changing. Although the ideal solution would be to wait until the end of the day to make decisions, physical work load capacities prevent this. For this reason we discuss two online problems, online 0-1 budgeted matching and the budgeted Adwords auction. We present a 1/(2 w_max/w_min)-competitive algorithm for the online 0-1 budgeted matching problem, and prove that this is the best possible competitive ratio possible for a wide class of algorithms. We also give a (1− (S+1)/(S+e) )-competitive algorithm for the budgeted Adwords auction as the size of the bids and cost get small compared to the budgets, where S is the ratio of the highest and lowest ratios of bids to costs. We suggest a linear programming approach to solve Zip’s assignment problem. We develop an integer program that models the B-matching instance with additional constraints of concern to Zip, and prove that this integer program belongs to a larger class of integer programs that has totally unimodular constraint matrices. Thus, the assignment problem can be solved to optimality every thirty minutes. We additionally create a test environment to check daily performance, and provide real-time implementation results, showing a marked improvement over Zip’s old algorithm. We show that Zip’s purchasing problem can be modeled by the matching augmentation problem defined as follows. Given a graph with vertex capacities and costs, edge weights, and budget C, find a purchasing of additional node capacity of cost at most C that admits a B-matching of maximum weight. We give a PTAS for this problem, and then present a special case that is polynomial time solvable that still models Zip’s purchasing problem, under the assumption of uniform costs. We then extend the augmentation idea to matroids and present matroid augmentation, matroid knapsack, and matroid intersection knapsack, three NP-hard problems. We give an FPTAS for matroid knapsack by dynamic programming, PTASes for the other two, and demonstrate applications of these problems.

Page generated in 0.0481 seconds