• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 341
  • 172
  • 36
  • 35
  • 21
  • 12
  • 7
  • 7
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 798
  • 249
  • 217
  • 176
  • 104
  • 92
  • 84
  • 69
  • 66
  • 54
  • 51
  • 48
  • 46
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Some Dye Plants of the Texas Plains Region and Analyses and Verifications of their Dye-Producing Qualities

Coulter, Elizabeth Lane 08 1900 (has links)
This study examines the dye plants in the Texas plains region and the extent of their dye-producing qualities. It describes the interest in handicrafts, lack of information on vegetable dyes in plains region, and a variety of other dye details.
142

Dye Sensitization in a Photoelectrochemical Water-Splitting Cell Using N,N'-Bis(3-phosphonopropyl)-3,4,9,10-perylenedicarboximide

Emig, Andrew James 20 September 2012 (has links)
No description available.
143

Indigenous natural dyes for Gratzel solar cells : Sepia melanin

Mbonyiryivuze, Agnes 11 1900 (has links)
Dye-sensitized Solar Cells (DSSC), also known as Grätzel cells, have been identified as a cost-effective, easy-to-manufacture alternative to conventional solar cells. While mimicking natural photosynthesis, they are currently the most efficient third-generation solar technology available. Among others, their cost is dominated by the synthetic dye which consists of efficient Ruthenium based complexes due to their high and wide spectral absorbance. However, the severe toxicity, sophisticated preparation techniques as well as the elevated total cost of the sensitizing dye is of concern. Consequently, the current global trend in the field focuses on the exploitation of alternative organic dyes such as natural dyes which have been studied intensively. The main attractive features of natural dyes are their availability, environmental friendly, less toxicity, less polluting and low in cost. This contribution reports on the possibility of using sepia melanin dye for such DSSC application in replacement of standard costly ruthenium dyes. The sepia melanin polymer has interesting properties such as a considerable spectral absorbance width due to the high degree of conjugation of the molecule. This polymer is capable of absorbing light quantum, both at low and high energies ranging from the infrared to the UV region. The comprehensive literature survey on Grätzel solar cells, its operating principle, as well as its sensitization by natural dyes focusing on sepia melanin has been provided in this master’s dissertation. The obtained results in investigating the morphology, chemical composition, crystalline structure as well as optical properties of sepia melanin samples using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy x-ray diffraction, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, UV-VIS absorption spectroscopy as well as Photoluminescence (PL) for Grätzel solar cell application have been reported. These results represent an important step forward in defining the structure of melanin. The results clearly show that sepia melanin can be used as natural dye to DSSC sensitization. It is promising for the realization of high cell performance, low-cost production, and non-toxicity. It should be emphasized here that natural dyes from food are better for human health than synthetic dyes. / Physics / 1 online resource (xii, 101 leaves) : illustrations / M. Sc. (Physics)
144

Διερεύνηση διαδικασιών μεταφοράς φορέων ηλεκτρισμού σε νανοδομημένα στρώματα ημιαγωγών με φωτοβολταϊκές εφαρμογές

Μουρτζίκου, Αργυρούλα 17 July 2014 (has links)
Στη παρούσα διπλωματική εργασία, μελετήθηκαν ευαισθητοποιημένες ηλεκτροχημικές ηλιακές κυψελίδες. Ιδιαίτερη έμφαση δόθηκε στη βελτιστοποίηση κύριων χαρακτηριστικών των κυψελίδων αυτών, όπως είναι η απόδοση και ο χρόνος ζωής των ηλεκτρονίων. Για το σκοπό αυτό, παρασκευάστηκαν ηλεκτροχημικές κυψελίδες οι οποίες περιείχαν λεπτά υμένια ημιαγωγού TiO2. Δοκιμάστηκαν διαφορετικά υλικά κατά τη σύνθεση της πάστας TiO2 (ΗNO3, CH3COCH2COCH3, H3PO4) καθώς και διαφορετικοί τρόποι παρασκευής των υμενίων αυτών (doctor blade, spin coating), με στόχο πάντα την επίτευξη υψηλότερης απόδοσης. Έγινε σύγκριση των αποτελεσμάτων έτσι ώστε να προσδιοριστούν οι διάφοροι παράγοντες στους οποίους οφείλονται τα προβλήματα στη λειτουργία των κυψελίδων αυτών. Για την ευαισθητοποίηση των παραπάνω υμενίων δοκιμάστηκε η χρωστική ρουθηνίου Ν3. Επίσης, στο αρχικό στάδιο των πειραμάτων, τα υμένια TiO2 των κυψελίδων χαρακτηρίστηκαν και ως προς τη μεταβατική φωτοαγωγιμότητά τους για μια επιπλέον ένδειξη της συμπεριφοράς τους στο κενό και στον αέρα. Η μέτρηση της μεταβατικής φωτοαγωγιμότητας έγινε, επίσης, και σε διαφορετικά πάχη υμενίων με στόχο τον καθορισμό του βέλτιστου πάχους. Δείγματα που περιείχαν HNO3 διαπιστώθηκε πως είχαν υψηλότερη απόδοση εν αντιθέσει με δείγματα που περιείχαν H3PO4 τα οποία είχαν χαμηλότερη απόδοση. Ο χρόνος ζωής ενός ηλεκτρονίου φαίνεται να διατηρείται σε υψηλά επίπεδα σε δείγματα που περιείχαν ΗΝΟ3, εν αντιθέσει με άλλα δείγματα στα οποία ο χρόνος ζωής είτε είχε ραγδαία μείωση εξαρχής (Η3PO4), ή είχε ασυνήθιστη μείωση και αύξηση στη δεύτερη και τρίτη μέτρηση (CH3COCH2COCH3). Η προσθήκη CH3COCH2COCH3 στην παρασκευή των υμενίων είχε ως αποτέλεσμα υμένια με υψηλότερη μεταβατική φωτοαγωγιμότητα τόσο στο κενό, όσο και στον αέρα, όμως, χωρίς ιδιαίτερη σταθερότητα. Αντίθετα, η προσθήκη HNO3 παρουσίασε ομαλότερη συμπεριφορά και σαφώς υψηλότερη μεταβατική φωτοαγωγιμότητα στα υμένια σε σύγκριση με υμένια που περιείχαν H3PO4, τα οποία ίσως και λόγω υψηλής ηλεκτραρνητικότητας της φωσφορικής ρίζας σε σύγκριση με αυτή της νιτρικής ρίζας, φάνηκαν ιδιαιτέρως ασθενή. Τα δείγματα παρουσίαζαν μείωση της απόδοσης σε συνάρτηση με το χρόνο. Επιπλέον, το γενικό συμπέρασμα για το πάχος ήταν πως πρέπει να κυμαίνεται γύρω στα 10μm για την αποδοτικότερη λειτουργία μιας ηλεκτροχημικής κυψελίδας. Το υμένιο τέτοιων κυψελίδων αποδείχτηκε πως έχει τη βέλτιστη μεταβατική φωτοαγωγιμότητα στο κενό και στον αέρα, επίσης. Επιπρόσθετα, η σύνδεση των ηλεκτροδίων ομοεπίπεδα (coplanar) σε σχέση με τη την σύνδεση τους ως σάντουιτς δίνει καλύτερα αποτελέσματα και μάλιστα με διαφορά μεγέθους τεσσάρων τάξεων, όσον αφορά τη μεταβατική φωτοαγωγιμότητα τόσο στο κενό, όσο και στον αέρα. Τέλος, η μέθοδος εναπόθεσης spin-coating ενδείκνυται για τα συγκεκριμένα πειράματα, λόγω επίτευξης υμενίων ιδιαιτέρως ομοιόμορφων και με επαναληψιμότητα. Λόγω επίτευξης μικρού πάχους υμενίων, ενδείκνυνται οι πολλαπλές επιστρώσεις για μεγαλύτερο πάχος των υμενίων. Συνίσταται, επίσης, εναλλακτικά είτε πυκνότερη πάστα, είτε λιγότερα δευτερόλεπτα περιστροφής, ή συνδυασμός αυτών των δύο παραμέτρων. Αντιθέτως, η μέθοδος doctor blade οδήγησε σε υμένια που δεν ήταν τόσο ομοιόμορφα και αυτό το γεγονός είχε αντίκτυπο και στη λειτουργία της κυψελίδας. / In the present thesis, dye-sensitized solar cells were studied. Particular emphasis was placed on optimizing the main characteristics of these cells, such as the efficiency and the lifetime of electrons. For this purpose, dye-sensitized solar cells were prepared containing thin films of semiconductor TiO2. Different materials were tested during the composition of the paste TiO2 (ΗNO3, CH3COCH2COCH3, H3PO4) as well as different ways of preparation of these films (doctor blade, spin coating), always aiming to achieve higher performance. Also, the results compared in order to identify individual factors behind the problems in the functioning of these cells. For the sensitization of these films, the ruthenium dye N3 was tested. Also, at the initial stage of the experiments, the TiO2 films of the cells were characterized in terms of their transient photoconductivity for an additional indication of the behavior in vacuum and in air. The measurement of the transient photoconductivity was taken place also at different film thicknesses in order to determine the optimal thickness. Samples containing HNO3 found to have higher performance unlike samples containing H3PO4 which had a lower performance. The lifetime of an electron appears to persist at high levels in samples containing HNO3, in contrast with other samples in which the lifetime was either rapidly reducing from the beginning (H3PO4), or had unusual decrease and increase in the second and third measurement (CH3COCH2COCH3). Adding CH3COCH2COCH3 in the preparation of the films had as a result films with higher transient photoconductivity both in vacuum and in air, but without particular stability. In contrast, the addition of HNO3 showed smoother behavior and clearly higher transient photoconductivity in films in comparison with films containing H3PO4, which perhaps due to the high electronegativity of phosphate in comparison with that of the nitrate anions, seemed particularly weak. The samples showed a reduction as a function of the time. Moreover, the overall conclusion for the thickness was that it should range around 10μm in order to achieve the most efficient operation of an electrochemical cell. It has proved that the film of such cells has the most optimum transient photoconductivity in vacuum and in air, too. Additionally, the coplanar way of connecting electrodes in relation with the “sandwich” way of connecting electrodes gives better results, with difference of four grades size concerning the transient photoconductivity both in vacuum and in air. Finally, the method of spin-coating deposition is indicated for these experiments, achieving films particularly uniform and highly reproducible. Since films are thin, multiple coatings are appropriate for thicker films. Also, it is recommended, alternatively, either denser paste or fewer seconds of rotation, or a combination of these two parameters. In contrast, doctor blade method leaded to films that are not uniform at all and this fact had an impact on the function of the cell.
145

Effect of morphologies and electronic properties of metal oxide nanostructure layer on dye sensitized solar cells

Yip, Cho-tung., 葉佐東. January 2010 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
146

Fabrication of Dye Sensitized Solar Cells on Pre-textured Substrates

Chen, Linda Yen-Chien January 2010 (has links)
Dye Sensitized Solar Cells (DSSC) possesses huge potential in solar energy utilisation and immense research has been carried out in order to improve its performance. There are several aspects that affect the solar cell’s performance, such as the photon collection efficiency of the cell, the reflectivity of the semiconductor, the transparency and conductivity of the transparent conductive oxide layer, and the photon-electron conversion efficiency. In this research, a pre-patterned substrate was used as a base to fabricate DSSC for improving the photon collection efficiency of DSSC. The pre-patterned substrate was prepared using maskless dry etching technique, resulting in micro-size features on the substrates and giving a 1% reduction on reflectance. The effect of Aluminium doped ZnO sputtered as the Transparent Conductive Oxide layer (TCO) in comparison with a typical DSSC fabricated on Tin doped Indium Oxide glass (ITO) was also studied. The research was carried out in two parts: substrate texturing of glass fabrication with Al:ZnO deposition, and DSSC cell assembly. The first half was carried out in the nanofabrication laboratory at University of Canterbury, New Zealand, and the second half was in National Nano Device Laboratory, Taiwan. The characteristics of both the substrates and the cells were measured using spectrophotometer with integrating sphere and solar cell simulation system. Decrease in reflectance of the Al:ZnO coated substrate at infrared region from 20% to 10 % was achieved. Due to the high resistivity of Al:ZnO and the problem of incapability in TiO2 coating, DSSC cells fabricated with these substrates have efficiencies around 2%, which is lower than the typical DSSC cells fabricated with ITO glass. Future adjustments on the substrate etching process and the cell assembly are needed for optimizing the results. The relatively high resistivity of Al:ZnO also needs to be lower for better DSSC cell performance.
147

Fluorescence and elastic scattering from laser dye-filled capillaries

Sekerak, Edward Michael, 1959- January 1989 (has links)
We investigated the elastic scattering and fluorescence from laser dye solutions inside 5000, 1100, and 96.5 micron inner-diameter hollow-core capillaries. Incident 4416 A laser illumination of Coumarin 7 dye dissolved in ethanol caused fluorescence from approximately 4600 to 6000 A. This was studied over an angular range from 0° to 360°. A light scattering nephelometer coupled with a spectrometer gave intensity measurements as functions of wavelength (at fixed detection angles) and angle (at fixed wavelengths), while the illumination source, dye-filled capillary, and detector remained stationary. We saw capillary size and detection-angle dependence of the fluorescence and elastic scattering. Results show that angular variations of the elastic scattering and emitted fluorescence can be used to determine an optimum detection angle from the capillary with respect to the incident illumination direction. This work is important in the design and execution of Capillary Zone Electrophoresis (CZE) experiments.
148

Light harvesting and photoconversion efficiency enhancement in dye-sensitized solar cells via molecular and photonic advancements

Brown, M. D. January 2012 (has links)
The main goal of this thesis is to investigate and develop the physics of dye-based photovoltaic physics through molecular and photonic routes. Numerous photovoltaics devices have been fabricated through the course of this work to study their characteristics, performance, physical composition and action. The relative youth of the field of dye-based optoelectronics provides extensive scope for new research which provides fascinating opportunities in terms of physical processes.This thesis is divided into two main projects; exploring the adaption of conventional dye-sensitized solar cells via starkly different routes which serendipitously culminated in striking similarities at their conclusion. The first route is through incorporating spectrally complementary dye molecules with the intention of extending the range of light absorption of the final devices. This initial aim was achieved and was then furthered by the realisation of an unexpected and unprecedented energy transfer process occurring, imparting enhanced photocurrent generation in both the near-IR and visibile region. The second route involves investigating the effect on dye-sensitized solar cell physics and performance of the inclusion of metallic nanoparticles with the expectation of inducing plasmonic interactions. Novel systems were designed and implemented, devices were made which display significant performance enhancement, attributed to plasmonic coupling into the dyes and thereby increasing photocapture. A number of other investigations are documented whose current completion does not sufficiently warrant independent chapters but whose scientific interest is evident.
149

Anthracene-fused porphyrins

Davis, Nicola Kathleen Sybille January 2011 (has links)
This thesis describes the synthesis of a novel family of porphyrins fused to anthracenes, together with investigations into their optical and electrochemical properties, as well as exploring their potential for application in dye-sensitised solar cells. Chapter 1 gives an overview of the structure-property relationships of large planar pi- systems for organic electronic applications. Porphyrins are introduced as suitable building blocks for such systems, and approaches for extending the pi-conjugation of these macrocycles are presented. A literature review of porphyrins fused to aromatic units is presented in Chapter 2, with a focus on the influence of structure on the optoelectronic properties of such systems. The chapter concludes with a summary of my previous work on the synthesis of anthracene-fused porphyrins, and the aims of this project are stated. Chapter 3 describes the syntheses of fully and partially fused bis-anthracene porphyrin monomers and dimers. By varying peripheral substituents, it was possible to solve problems of aggregation encountered for these systems. Fusion of anthracene units to a porphyrin core was found to result in systems displaying strong absorption in the near-IR, small HOMO-LUMO gaps, and low oxidation potentials. Chapter 4 explores the synthesis, crystal structure and optoelectronic properties of a porphyrin fused to four anthracenes, revealing this system to exhibit the longest wavelength absorption of any porphyrin monomer. The synthesis of a liquid crystalline tetra-anthracene-fused porphyrin was proposed, and attempts to synthesise the necessary anthracene precursors were undertaken. Chapter 5 describes the molecular design and synthetic pathway to a mono-anthracene fused porphyrin, and its unfused analogue, for use in liquid electrolyte dye-sensitised solar cells. By varying the metal oxide layer or lithium ion concentration of the device, it was possible to achieve incident photon to current conversion efficiency (IPCE) responses at wavelengths beyond 1050 nm. Chapter 6 details the experimental synthetic procedures and characterisation data for all the compounds synthesised during this project.
150

DNA PHOTO-CLEAVAGE AND INTERACTIONS BY QUINOLINE CYANINE DYES; TOWARDS IMPROVING PHOTODYNAMIC CANCER THERAPY

Fatemipouya, Tayebeh 14 December 2016 (has links)
Photodynamic therapy (PDT) is a cancer treatment method in which a photosensitizer, light of a particular wavelength, and also oxygen are used to destroy cancerous cells. Cancer cells absorb the photosensitizing agent which is injected into the body, and it is triggered to cause cell destruction upon absorption of light. This occurs because of the excitation of the photosensitizer produces reactive oxygen species that induce a cascade of cellular and molecular events in the body. Photosensitizing agents that can photo-cleave DNA at long wavelengths are highly demanded in PDT, because the long wavelengths of light can penetrate through tissue deeply compared to visible light. While most of the photosensitizers are activated at wavelengths less than 690 nm, penetration of light continues to increase at increasing wavelengths. In this thesis, photosensitizers that can be activated to oxidize DNA with long wavelengths of light will be discussed. Using quinoline cyanine dyes, here we report the first example of DNA photocleavage at a wavelength of light above 800 nm.

Page generated in 0.0418 seconds