• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Modeling of Tsunami-induced Hydrodynamic Forces on Free-standing Structures Using the SPH Method

St-Germain, Philippe 23 November 2012 (has links)
Tsunamis are among the most terrifying and complex physical phenomena potentially affecting almost all coastal regions of the Earth. Tsunami waves propagate in the ocean over thousands of kilometres away from their generating source at considerable speeds. Among several other tsunamis that occurred during the past decade, the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami in Japan, considered to be the deadliest and costliest natural disasters in the history of mankind, respectively, have hit wide stretches of densely populated coastal areas. During these major events, severe destruction of inland structures resulted from the action of extreme hydrodynamic forces induced by tsunami flooding. Subsequent field surveys in which researchers from the University of Ottawa participated ultimately revealed that, in contrast to seismic forces, such hydrodynamic forces are not taken into proper consideration when designing buildings for tsunami prone areas. In view of these limitations, a novel interdisciplinary hydraulic-structural engineering research program was initiated at the University of Ottawa, in cooperation with the Canadian Hydraulic Centre of the National Research Council, to help develop guidelines for the sound design of nearshore structures located in such areas. The present study aims to simulate the physical laboratory experiments performed within the aforementioned research program using a single-phase three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) numerical model. These experiments consist in the violent impact of rapidly advancing tsunami-like hydraulic bores with individual slender structural elements. Such bores are emulated based on the classic dam-break problem. The quantitatively compared measurements include the time-history of the net base horizontal force and of the pressure distribution acting on columns of square and circular cross-sections, as well as flow characteristics such as bore-front velocity and water surface elevation. Good agreement was obtained. Results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. The latter was found to increase considerably if the bed of the experimental flume is covered with a thin water layer of even just a few millimetres. In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. However, this formulation induces excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are less accurately reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled. Lastly, taking full advantage of the validated numerical model to better understand the underlying flow dynamics, the influence of the experimental test geometry and of the bed condition (i.e. dry vs. wet) is investigated. Numerical results show that when a bore propagates over a wet bed, its front is both deeper and steeper and it also has a lower velocity compared to when it propagates over a dry bed. These differences significantly affect the pressure distributions and resulting hydrodynamic forces acting on impacted structures.
2

Numerical Modeling of Tsunami-induced Hydrodynamic Forces on Free-standing Structures Using the SPH Method

St-Germain, Philippe 23 November 2012 (has links)
Tsunamis are among the most terrifying and complex physical phenomena potentially affecting almost all coastal regions of the Earth. Tsunami waves propagate in the ocean over thousands of kilometres away from their generating source at considerable speeds. Among several other tsunamis that occurred during the past decade, the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami in Japan, considered to be the deadliest and costliest natural disasters in the history of mankind, respectively, have hit wide stretches of densely populated coastal areas. During these major events, severe destruction of inland structures resulted from the action of extreme hydrodynamic forces induced by tsunami flooding. Subsequent field surveys in which researchers from the University of Ottawa participated ultimately revealed that, in contrast to seismic forces, such hydrodynamic forces are not taken into proper consideration when designing buildings for tsunami prone areas. In view of these limitations, a novel interdisciplinary hydraulic-structural engineering research program was initiated at the University of Ottawa, in cooperation with the Canadian Hydraulic Centre of the National Research Council, to help develop guidelines for the sound design of nearshore structures located in such areas. The present study aims to simulate the physical laboratory experiments performed within the aforementioned research program using a single-phase three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) numerical model. These experiments consist in the violent impact of rapidly advancing tsunami-like hydraulic bores with individual slender structural elements. Such bores are emulated based on the classic dam-break problem. The quantitatively compared measurements include the time-history of the net base horizontal force and of the pressure distribution acting on columns of square and circular cross-sections, as well as flow characteristics such as bore-front velocity and water surface elevation. Good agreement was obtained. Results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. The latter was found to increase considerably if the bed of the experimental flume is covered with a thin water layer of even just a few millimetres. In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. However, this formulation induces excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are less accurately reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled. Lastly, taking full advantage of the validated numerical model to better understand the underlying flow dynamics, the influence of the experimental test geometry and of the bed condition (i.e. dry vs. wet) is investigated. Numerical results show that when a bore propagates over a wet bed, its front is both deeper and steeper and it also has a lower velocity compared to when it propagates over a dry bed. These differences significantly affect the pressure distributions and resulting hydrodynamic forces acting on impacted structures.
3

Numerical Modeling of Tsunami-induced Hydrodynamic Forces on Free-standing Structures Using the SPH Method

St-Germain, Philippe January 2012 (has links)
Tsunamis are among the most terrifying and complex physical phenomena potentially affecting almost all coastal regions of the Earth. Tsunami waves propagate in the ocean over thousands of kilometres away from their generating source at considerable speeds. Among several other tsunamis that occurred during the past decade, the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami in Japan, considered to be the deadliest and costliest natural disasters in the history of mankind, respectively, have hit wide stretches of densely populated coastal areas. During these major events, severe destruction of inland structures resulted from the action of extreme hydrodynamic forces induced by tsunami flooding. Subsequent field surveys in which researchers from the University of Ottawa participated ultimately revealed that, in contrast to seismic forces, such hydrodynamic forces are not taken into proper consideration when designing buildings for tsunami prone areas. In view of these limitations, a novel interdisciplinary hydraulic-structural engineering research program was initiated at the University of Ottawa, in cooperation with the Canadian Hydraulic Centre of the National Research Council, to help develop guidelines for the sound design of nearshore structures located in such areas. The present study aims to simulate the physical laboratory experiments performed within the aforementioned research program using a single-phase three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) numerical model. These experiments consist in the violent impact of rapidly advancing tsunami-like hydraulic bores with individual slender structural elements. Such bores are emulated based on the classic dam-break problem. The quantitatively compared measurements include the time-history of the net base horizontal force and of the pressure distribution acting on columns of square and circular cross-sections, as well as flow characteristics such as bore-front velocity and water surface elevation. Good agreement was obtained. Results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. The latter was found to increase considerably if the bed of the experimental flume is covered with a thin water layer of even just a few millimetres. In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. However, this formulation induces excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are less accurately reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled. Lastly, taking full advantage of the validated numerical model to better understand the underlying flow dynamics, the influence of the experimental test geometry and of the bed condition (i.e. dry vs. wet) is investigated. Numerical results show that when a bore propagates over a wet bed, its front is both deeper and steeper and it also has a lower velocity compared to when it propagates over a dry bed. These differences significantly affect the pressure distributions and resulting hydrodynamic forces acting on impacted structures.
4

Analytical and experimental investigations of dam-break flows in triangular channels with wet-bed conditions

Wang, B., Liu, X., Zhang, J., Guo, Yakun, Chen, Y., Peng, Y., Liu, W., Yang, S., Zhang, F. 28 July 2020 (has links)
Yes / Based on the method of characteristics, an analytical solution for the one-dimensional shallow-water equations is developed to simulate the instantaneous dam-break flows propagating down a triangular wet bed channel in this study. The internal relationships between the hydraulic properties associated with the dam-break flow are investigated through the comparisons with the well-known analytical solutions for rectangular channels. Meanwhile, laboratory experiments are conducted in a prismatic, horizontal and smooth flume with a triangular cross-section. The non-intrusive digital image processing is applied for obtaining water surface profiles and stage hydrographs. Results show that the dam-break flow propagation depends on the dimensionless parameter defined as the ratio of initial tailwater depth over reservoir head. has significant effect on the dam-break wave in the downstream flooded area. For , the water surface profiles in the reservoir for different at a given time remains similar. For ≥ 0.5, extra negative waves occur in the reservoir, leading to the water surface undulations. Undular bores are generated at the dam site and propagate downstream. Time evolution of dam-break flows under three different reservoir heads is similar for the same . The inception of water surface profile change is earlier when the reservoir head is larger. The analytical model shows satisfactory agreement with the experimental results though some errors exist between the analytical solution and measurements due to the formation of extra negative waves, jet and undular bores. The similarities and discrepancies between the hydraulics in the triangular and rectangular channels are identified analytically in terms of the profiles of water depth, velocity, discharge, bore height and wave-front celerity with . The presented solution could be applied to predict the effect of wet bed condition on the dam-break wave in triangular channels, while laboratory measurement data could be used for validating analytical and numerical models. / National Natural Science Foundation of China (Grant No: 51879179), Sichuan Science and Technology Program (No. 2019JDTD0007) and Open Fund from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1809)
5

Experimental and Numerical Investigations on the Hydrodynamic Loading of Tsunami-like Surges on Infrastructures

Liu, Shilong 15 December 2022 (has links)
Tsunamis have caused severe damage to coastal communities and associated infrastructure over the past decades. Thus, researchers deemed necessary to investigate and better understand the mechanisms loading associated with tsunami waves and the inundation caused by them. Over the past few years, researchers have demonstrated that the dam-break waves are hydrodynamically similar to the onshore propagation of tsunami inundation; hence, dam-break waves are now widely used to investigate tsunami impacts. Various studies related to dam-break waves have been conducted to investigate their characteristics: the kinematic behavior, including free surface profiles, wave height, wave front velocity, and dynamics including the impact pressure and associated force. Most dam-break experiments have been conducted on a horizontal bed, in a tank or a flume, while few studies had employed sloped surfaces. However, natural and artificial beaches usually have slopes ranging from 0-degrees to 20-degrees (or more). In this study, downstream slopes are considered to investigate the influence of slope effects on the kinematic behaviors and associated hydrodynamic loadings due to dam-break waves. The Volume of Fluid method (VOF) code of the OpenFOAM and the Smoothed Particle Hydrodynamics (SPH) code of the DualSPHysics were applied to reproduce the results of physical tests and provide a comparison with the experimental results. First, existing boundary treatment methods in the SPH were studied and compared to a self-developed code in order to select the best performing method by checking the flow behaviors. In the second part of the thesis, experimental investigation of the impact of dam-break induced surges over a horizontal bed against a vertical wall was conducted by analysing the rapidly varying correlation between the wave height and the associated dynamic pressure. In the third part of this study, three different downstream slopes were added in the experimental setup to investigate the beach effects on the kinematics of dam-break flow, including the free surface profiles, wave height, wave front location and its velocity. In the last part, the impact dynamic pressure on the vertical straight wall from the horizontal and sloped cases were captured to investigate the slope effects on the hydrodynamic loading. The impact force integrated from the dynamic pressure was determined with a simplified calculation formula. In addition, the physical experiments were also reproduced by the numerical models of OpenFOAM and DualSPHysics to compare and investigate their accuracy and to analyze the differences between the physical tests and numerical simulations.
6

Hydrodynamics of Turbulent Bores Propagating Over a Canal

Elsheikh, Nuri Eltaher 04 January 2023 (has links)
Recent tsunami events have inflicted devastating damage to coastal communities. Existing design standards provide a certain level of evaluation of tsunami effects such that critical infrastructure can be designed to resist tsunamis. Tsunami momentum flux, used to design structures is a function of water level height and velocity of tsunami bores. Understanding tsunamis and developing mitigation measures is essential. So far, some mitigation measures have been suggested, and to improve them, further investigations are required. The design of tsunami inundation effects mitigation canals is one of the suggested solutions which has received limited attention. The first objective of this study was to investigate the effects of a rectangular canal on the hydrodynamics of turbulent bores before and after the canal by conducting a series of physical experiments. A dam-break wave was used to simulate the tsunami-like turbulent waves passing over a smooth and horizontal surface, in the presence and/or absence of a canal. Three canal water depths were used to model shallow, moderate, and deep conditions, and three canal widths were also selected to model narrow to wide conditions while the dam break waves were generated from three different impoundment depths in a reservoir located upstream of the canal. The dam-break wave propagation over a horizontal, dry, and smooth bed revealed four regimes describing the variations of bore height with time. The time to reach the maximum bore height and the quasi steady-state regime were correlated with each impoundment depth and an empirical formulation was proposed to estimate the onset of the quasi steady-state flow. The maximum bore heights measured before and after the mitigation canal location were approximately 40 % and 50 % respectively, higher compared with those recorded in the corresponding tests without the presence of a canal. The second objective of this study was to experimentally investigate the effects of canal depth on the time history of bore height and its velocity. The experimental results were used for calibration and validation of a developed numerical model. The rapid release of an upstream impoundment water depth was employed to generate a bore analogous to a tsunami-induced inundation. The time histories of wave heights and velocity were measured upstream and downstream of the canal. The recorded time-series of the water surface levels and velocities were compared with the simulation results and good agreement was found between experimental and numerical water surface profiles using a Root Mean Square Error (RMSE) and the Relative Error. Three turbulence models:, namely the standard k-ε, the Realizable k-ε, and the RNG k-ε were tested, and it was found that all turbulence models perform well but the standard k-ε model provided satisfactory accuracy. The velocity contour plots for shallow, medium, and deep mitigation canals showed the formation and evolution of jets of different characteristics. The energy dissipation and air bubble entrainment of the tsunami bore, as it plunged into a canal, increased as the canal depth increased, and the jet flow of the maximum bore velocity decreased with increased canal depth. It was found that the eye of the vortex in the canal moved steadily in the downstream direction. Generally, the bore fully plunged almost nearly into the middle of the canal and started to divide into two small vortices. The third objective of this study dealt with a sequence of numerical experiments conducted to investigate the impact of mitigation canals on the hydrodynamics of a tsunami-like turbulent bore moving across a flat bed. The effects of mitigation canal depth and its orientation on the reduction of maximum specific momentum and energy of turbulent bores crossing over it were investigated numerically. Variations in the ratio between the downstream and upstream maximum specific momentum and mean flow energy decreased as the canal depth increased, and the time history of the mean flow energy over a canal with a rectangular endwise profile revealed that the canal depth affects the jet stream of the maximum mean flow energy. As the canal depth increased, the period of time needed to dissipate the area of the jet stream with the maximum turbulent kinetic energy, vorticity, and energy dissipation rate decreased. Both the angled and perpendicular to flow direction canals caused the maximum specific momentum and energy of the turbulent bore to decrease downstream of the canal. The specific momentum and energy achieved their highest values for a canal orientation of 45º. The greatest reductions in maximum specific momentum for turbulent bores over canals with different depths and orientations were achieved for 𝜃 = 30°.
7

Gate-opening criterion for generating dam-break flow in non-rectangular wet bed channels

Yang, S., Wang, B., Guo, Yakun, Zhang, J., Chen, Y. 28 November 2020 (has links)
Yes / A sudden dam failure is usually simulated by the rapid removal of a gate in laboratory tests and numerical simulations. The gate-opening time is often determined according to the Lauber and Hager instantaneous collapse criterion (referred to as Lauber-Hager criterion) established for a rectangular open channel with a dry bed. However, this criterion is not suitable for non-rectangular channels or initial wet-bed conditions. In this study, the effect of the gate-opening time on the wave evolution is investigated by using the large eddy simulation (LES) model. The instantaneous dam break, namely the dam break without a gate, is simulated for comparison. A gate-opening criterion for generating dam-break flow in non-rectangular wet bed channel is proposed in this study, which can be used as an extension of the Lauber-Hager criterion and provides a more comprehensive and reasonable estimate of the gate opening time. / National Natural Science Foundation of China (Grant No: 51879179), the Open Fund from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1809) and Sichuan Science and Technology Program (No. 2019JDTD0007).
8

Laminar and turbulent analytical dam break wave modelling on dry-downstream open channel flow

Taha, T., Lateef, A.O.A., Pu, Jaan H. 26 September 2018 (has links)
Yes / A dam break wave caused by the discontinuity in depth and velocity of a flow is resulted from instantaneous release a body of water from a channel and classified naturally as a rapidly varied unsteady flow. Due to its nature, it is hard to be accurately represented by analytical models. The aim of this study is to establish the modelling differences and complexity echelons between analytically simulated explicit laminar and turbulent dry bed dam break wave free surface profiles. An in-depth solution to the free surface profile has been provided and evaluated by representing the reported dam break flow measurements at various locations. The methodology adopted utilizes the free surface profile formulations presented by Chanson 1,2, which are developed using the method of characteristics. In order to validate the results of the presented analytical models in illustrating the dam break wave under dry bed conditions, published experimental data provided by Schoklitsch 3, Debiane 4 and Dressler 5 are used to compare and analyze the performance of the dam break waves under laminar and turbulent flow conditions.

Page generated in 0.0348 seconds