• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some fundamental issues of constrained layer damping treatments /

Huang, Yao-Hsin. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 77-80).
2

Design of an adaptive dynamic vibration absorber /

Ting-Kong, Christopher. January 1998 (has links) (PDF)
Thesis (M. Eng. Sc.)--University of Adelaide, Dept. of Mechanical Engineering, 1999. / Includes bibliographical references (leaves 94-97).
3

Design of an adaptive dynamic vibration absorber

Ting-Kong, Christopher. January 1998 (has links)
Thesis (M.Eng.Sc.)--University of Adelaide, Dept. of Mechanical Engineering, 1999. / Bibliography: leaves 94-97.
4

An analytical and experimental analysis for a one-dimensional passive stand-off layer damping treatment /

Yellin, Jessica M. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 181-184).
5

Electromechanical surface damping combining constrained layer and shunted piezoelectric materials with passive electrical networks of second order /

Velazquez, Carlos A. January 1995 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1995. / Typescript. Includes bibliographical references (leaves 97-99).
6

Active vibration control of a piezoelectric laminate plate using spatial control approach.

Lee, Yong Keat January 2005 (has links)
This thesis represents the work that has been done by the author during his Master of Engineering Science candidature in the area of vibration control of flexible structures at the School of Mechanical Engineering, The University of Adelaide, between March 2003 and June 2004. The aim of this research is to further extend the application of the Spatial Control Approach for two-dimensional flexible structures for attenuating global structural vibration with the possible implication of reduction in noise radiation. The research was concentrated on a simply supported thin flexible plate, using piezoelectric ceramic materials as actuators and sensors. In this work, active controllers were designed for the purpose of controlling only the first five vibration modes (0-500Hz) of the plate. A spatial controller was designed to minimize the total energy of the spatially distributed signal, which is reflected by the spatial H2 norm of the transfer function from the disturbance signal to the vibration output at every point over the plate. This approach ensures the vibration contributed by all the in bandwidth (0-500 Hz) vibration modes is minimized, and hence is capable of minimizing vibration throughout the entire plate. Within the control framework, two cases were considered here; the case when the prior knowledge of the incoming disturbance in terms of reference signal is vailable and the case when it is not available. For the case when the reference signal is available, spatial feedforward controller was designed; whereas for the case when the reference signal is not available, spatial feedback controller was designed to attenuate the global disturbance. The effectiveness of spatial controllers was then compared with that of the standard point-wise controllers numerically and experimentally. The experimental results were found to reflect the numerical results, and the results demonstrated that spatial controllers are able to reduce the energy transfer from the disturbance to the structural output across the plate in a more uniform way than the point-wise controllers. The research work has demonstrated that spatial controller managed to minimize the global plate vibrations and noise radiation that were due to the first five modes. / Thesis (M.Eng.Sc.)--School of Mechanical Engineering, 2005.
7

Active vibration control of a piezoelectric laminate plate using spatial control approach.

Lee, Yong Keat January 2005 (has links)
This thesis represents the work that has been done by the author during his Master of Engineering Science candidature in the area of vibration control of flexible structures at the School of Mechanical Engineering, The University of Adelaide, between March 2003 and June 2004. The aim of this research is to further extend the application of the Spatial Control Approach for two-dimensional flexible structures for attenuating global structural vibration with the possible implication of reduction in noise radiation. The research was concentrated on a simply supported thin flexible plate, using piezoelectric ceramic materials as actuators and sensors. In this work, active controllers were designed for the purpose of controlling only the first five vibration modes (0-500Hz) of the plate. A spatial controller was designed to minimize the total energy of the spatially distributed signal, which is reflected by the spatial H2 norm of the transfer function from the disturbance signal to the vibration output at every point over the plate. This approach ensures the vibration contributed by all the in bandwidth (0-500 Hz) vibration modes is minimized, and hence is capable of minimizing vibration throughout the entire plate. Within the control framework, two cases were considered here; the case when the prior knowledge of the incoming disturbance in terms of reference signal is vailable and the case when it is not available. For the case when the reference signal is available, spatial feedforward controller was designed; whereas for the case when the reference signal is not available, spatial feedback controller was designed to attenuate the global disturbance. The effectiveness of spatial controllers was then compared with that of the standard point-wise controllers numerically and experimentally. The experimental results were found to reflect the numerical results, and the results demonstrated that spatial controllers are able to reduce the energy transfer from the disturbance to the structural output across the plate in a more uniform way than the point-wise controllers. The research work has demonstrated that spatial controller managed to minimize the global plate vibrations and noise radiation that were due to the first five modes. / Thesis (M.Eng.Sc.)--School of Mechanical Engineering, 2005.
8

The state-switched absorber used for vibration control of continuous systems

Holdhusen, Mark Horner. January 2005 (has links) (PDF)
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2005. / Kenneth Cunefare, Committee Chair ; Nader Sadegh, Committee Member ; Aldo Ferri, Committee Member ; Sathyanaraya Hanagud, Committee Member ; Massimo Ruzzene, Committee Member. Includes bibliographical references.

Page generated in 0.1275 seconds