• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception de biocathode et implication du fer dans de nouveaux modes de transfert d'électrons / Biocathode design and iron involvement in new electron transfer modes

Chabert, Nicolas 21 December 2017 (has links)
Les piles à combustible microbiennes (PCMs) sont une technologie convertissant l’énergie chimique stockée dans la matière organique en énergie électrique à l’anode à l’aide de bactéries dites électroactives. A l'inverse des bioanodes, l’intérêt porté aux cathodes biologiques dans les PCMs est récent et ces dernières sont encore peu étudiées. Les objectifs de ces recherches ont donc été d’identifier et de décrire des bactéries ainsi que les mécanismes permettant de catalyser une réduction cathodique notamment celle de l’oxygène. La première partie des travaux portant sur la réalisation d’un criblage pour la formation de biocathodes a révélé l’inefficacité du métabolisme hétérotrophe pour la conception de biocathodes performantes. De ce fait, la suite des travaux a porté sur la bactérie chimiolithoautotrophe acidophile Acidithiobacillus ferrooxidans. Deux mécanismes de transfert d’électrons dépendant du fer ont été mis en évidence générant un courant maximal de -3,8 A.m-2. Nous avons également abordé les mécanismes de transfert d’électrons en milieu neutre chez une bactérie hétérotrophe, Pseudomonas brassicacearum NFM421 bien que peu performante en terme de production de courant. Cette dernière permet une catalyse indirecte de la réduction de l’oxygène à la cathode à pH neutre via un métabolite secondaire le 2,4-diacéthylphloroglucinol associé au fer, mettant encore une fois en lumière l’importance du fer dans le transfert d’électrons. Ce travail a également porté sur la potentielle application des biopiles dans des environnements anthropisés en vue de l’extraction de métaux et plus particulièrement de terre rares qui s’avèrent être une voie de recherche prometteuse. / Microbial fuel cells (MFCs) are devices that convert chemical energy contained in organic matter into electrical energy using electroactive bacteria that act at the anode. Currently, MFCs performances are limited by the use of abiotic cathode. The interest in biological cathode has recently started and less is known about bacterial diversity and mechanism that catalyze cathodic reduction. The aims of the research work are therefor to identify and describe potential bacteria and mechanism involved in such catalysis. The first part of the work is the realization of a screening that did not show conclusive results and might indicate that heterotrophic metabolism was not an efficient choice. Next, Acidithiobacillus ferrooxidans had been used and shown two extracellular electron transfer mechanism depending on iron. A maximum current intensity of -3,8 A.m-2 had been reached. To be close to operational condition of MFC, Pseudomonas brassicacearum NFM 421 has also be use and shown capacity to indirectly catalyze the oxygen reduction at a neutral pH using the 2,4-diacethylphloroglucinol, a secondary metabolite, associated to iron. However, current reach remained weak. Considering difficulty to build efficiant biocathode at a neutral pH, the end of this work had been focused on a new application of the MFC: metal and rare earth extraction from soil and contaminated site that appeared to be a great research opportunity to follow.
2

Compatibilité des bactéries phytobénéfiques Azospirillum et Pseudomonas dans la rhizosphère / Compatibility between the plant growth-promoting rhizobacteria Azospirillum and Pseudomonas on roots

Couillerot, Olivier 04 December 2009 (has links)
Les bactéries rhizosphériques qualifiées de PGPR (Plant Growth-Promoting Rhizobacteria) forment des symbioses associatives avec les plantes, stimulant la croissance de ces dernières. Les PGPR présentent différents mécanismes phytobénéfiques (production de phytohormones, fixation non symbiotique de l’azote, etc.). Plusieurs PGPR sont susceptibles d’interagir avec la même plante hôte, et il est possible que leurs effets phytobénéfiques soient influencés par les interactions qu’elles auront les unes avec les autres. L’objectif de cette thèse était de caractériser la compatibilité des PGPR dans la rhizosphère d’une même plante hôte, dans le cas de modèles bactériens appartenant aux genres Azospirillum et Pseudomonas. Certains Pseudomonas phytobénéfiques produisant des métabolites antimicrobiens, comme le 2,4-diacétylphloroglucinol (DAPG), nous avons tout d’abord examiné si la capacité à produire du DAPG pouvait inhiber Azospirillum. Les expériences de confrontation réalisées in vivo avec P. fluorescens F113 et un mutant DAPG-négatif, en système gnotobiotique, ont montré que la colonisation racinaire et l’activité phytostimulatrice de certaines PGPR Azospirillum pouvaient effectivement être diminuées en présence de Pseudomonas producteurs de DAPG. Pour évaluer la colonisation racinaire par Azospirillum en sol non stérile, des outils de PCR quantitative en temps réel ont été développés et validés pour trois souches de premier plan (A. lipoferum CRT1, A. brasilense UAP-154 et CFN-535). L’utilisation de ces outils a permis la comparaison de ces trois souches d’Azospirillum, chacune co-inoculée avec la souche P. fluorescens F113 productrice de DAPG, sur du maïs cultivé en sol non stérile. Les niveaux de colonisation racinaire différaient selon la souche d’Azospirillum, et la combinaison de microorganismes phytobénéfiques conduisait à une meilleure croissance du maïs par comparaison avec des plantes non inoculées. Les résultats suggèrent que des PGPR des genres Pseudomonas et Azospirillum peuvent être compatibles dans la rhizosphère d’une même plante, même si les premiers ont le potentiel d’inhiber certains des seconds par la production de métabolites secondaires antimicrobiens / Plant Growth-Promoting Rhizobacteria (PGPR) can form an associative symbiosis with plants, which results in stimulation of plant growth. PGPR harbour different phytobeneficial mechanisms (non-symbiotic nitrogen fixation, phytohormone synthesis, etc.). Various PGPR can interact with the same host plant, and it is possible that their phytobeneficial effects will be influenced by the interactions between these PGPR. The objective of this doctoral work was to characterize PGPR compatibility in the rhizosphere of the same host plant, in the case of model bacteria belonging to the genera Azospirillum and Pseudomonas. Because certain phytobeneficial Pseudomonas produce antimicrobial metabolites, such as 2,4-diacetylphloroglucinol (DAPG), we have first examined if DAPG production capacity could be involved in Azospirillum inhibition. In vivo experiments, performed with P. fluorescens F113 and a DAPG-negative mutant in gnotobiotic systems, showed that root colonization and phytostimulation activity of certain Azospirillum PGPR was indeed affected in the presence of DAPG-producing Pseudomonas. In order to evaluate Azospirillum root colonization in non-sterile soil, real-time quantitative PCR tools were developed and validated for three prominent Azospirillum strains (A. lipoferum CRT1, A. brasilense UAP-154 and CFN-535). The use of these real-time PCR tools enabled the comparison of the three Azospirillum strains, each co-inoculated with the DAPG-producing strain P. fluorescens F113, in the rhizosphere of maize grown in non-sterile soil. Root colonization levels differed according to the Azospirillum strain, and the combination of phytobeneficial microorganisms led to enhanced maize growth in comparison with non-inoculated plants. These results suggest that PGPR belonging to the genera Pseudomonas and Azospirillum may be compatible in the rhizosphere of a same plant, even if the former have the potential to inhibit some of the latter by producing antimicrobial secondary metabolites
3

Compatibilité des bactéries phytobénéfiques Azospirillum et Pseudomonas dans la rhizosphère

Couillerot, Olivier 04 December 2009 (has links) (PDF)
Les bactéries rhizosphériques qualifiées de PGPR (Plant Growth-Promoting Rhizobacteria) forment des symbioses associatives avec les plantes, stimulant la croissance de ces dernières. Les PGPR présentent différents mécanismes phytobénéfiques (production de phytohormones, fixation non symbiotique de l'azote, etc.). Plusieurs PGPR sont susceptibles d'interagir avec la même plante hôte, et il est possible que leurs effets phytobénéfiques soient influencés par les interactions qu'elles auront les unes avec les autres. L'objectif de cette thèse était de caractériser la compatibilité des PGPR dans la rhizosphère d'une même plante hôte, dans le cas de modèles bactériens appartenant aux genres Azospirillum et Pseudomonas. Certains Pseudomonas phytobénéfiques produisant des métabolites antimicrobiens, comme le 2,4-diacétylphloroglucinol (DAPG), nous avons tout d'abord examiné si la capacité à produire du DAPG pouvait inhiber Azospirillum. Les expériences de confrontation réalisées in vivo avec P. fluorescens F113 et un mutant DAPG-négatif, en système gnotobiotique, ont montré que la colonisation racinaire et l'activité phytostimulatrice de certaines PGPR Azospirillum pouvaient effectivement être diminuées en présence de Pseudomonas producteurs de DAPG. Pour évaluer la colonisation racinaire par Azospirillum en sol non stérile, des outils de PCR quantitative en temps réel ont été développés et validés pour trois souches de premier plan (A. lipoferum CRT1, A. brasilense UAP-154 et CFN-535). L'utilisation de ces outils a permis la comparaison de ces trois souches d'Azospirillum, chacune co-inoculée avec la souche P. fluorescens F113 productrice de DAPG, sur du maïs cultivé en sol non stérile. Les niveaux de colonisation racinaire différaient selon la souche d'Azospirillum, et la combinaison de microorganismes phytobénéfiques conduisait à une meilleure croissance du maïs par comparaison avec des plantes non inoculées. Les résultats suggèrent que des PGPR des genres Pseudomonas et Azospirillum peuvent être compatibles dans la rhizosphère d'une même plante, même si les premiers ont le potentiel d'inhiber certains des seconds par la production de métabolites secondaires antimicrobiens
4

Studies In Biocontrol: Enumeration, Characterization, And Screening Of Rhizobacteria

Raudales Banegas, Rosa Emilia 11 September 2008 (has links)
No description available.

Page generated in 0.0708 seconds