• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dark Spot Detection from SAR Intensity Imagery with Spatial Density Thresholding for Oil Spill Monitoring

Shu, Yuanming 28 January 2010 (has links)
Since the 1980s, satellite-borne synthetic aperture radar (SAR) has been investigated for early warning and monitoring of marine oil spills to permit effective satellite surveillance in the marine environment. Automated detection of oil spills from satellite SAR intensity imagery consists of three steps: 1) Detection of dark spots; 2) Extraction of features from the detected dark spots; and 3) Classification of the dark spots into oil spills and look-alikes. However, marine oil spill detection is a very difficult and challenging task. Open questions exist in each of the three stages. In this thesis, the focus is on the first stage—dark spot detection. An efficient and effective dark spot detection method is critical and fundamental for developing an automated oil spill detection system. A novel method for this task is presented. The key to the method is utilizing the spatial density feature to enhance the separability of dark spots and the background. After an adaptive intensity thresholding, a spatial density thresholding is further used to differentiate dark spots from the background. The proposed method was applied to a evaluation dataset with 60 RADARSAT-1 ScanSAR Narrow Beam intensity images containing oil spill anomalies. The experimental results obtained from the test dataset demonstrate that the proposed method for dark spot detection is fast, robust and effective. Recommendations are given for future research to be conducted to ensure that this procedure goes beyond the prototype stage and becomes a practical application.
2

Dark Spot Detection from SAR Intensity Imagery with Spatial Density Thresholding for Oil Spill Monitoring

Shu, Yuanming 28 January 2010 (has links)
Since the 1980s, satellite-borne synthetic aperture radar (SAR) has been investigated for early warning and monitoring of marine oil spills to permit effective satellite surveillance in the marine environment. Automated detection of oil spills from satellite SAR intensity imagery consists of three steps: 1) Detection of dark spots; 2) Extraction of features from the detected dark spots; and 3) Classification of the dark spots into oil spills and look-alikes. However, marine oil spill detection is a very difficult and challenging task. Open questions exist in each of the three stages. In this thesis, the focus is on the first stage—dark spot detection. An efficient and effective dark spot detection method is critical and fundamental for developing an automated oil spill detection system. A novel method for this task is presented. The key to the method is utilizing the spatial density feature to enhance the separability of dark spots and the background. After an adaptive intensity thresholding, a spatial density thresholding is further used to differentiate dark spots from the background. The proposed method was applied to a evaluation dataset with 60 RADARSAT-1 ScanSAR Narrow Beam intensity images containing oil spill anomalies. The experimental results obtained from the test dataset demonstrate that the proposed method for dark spot detection is fast, robust and effective. Recommendations are given for future research to be conducted to ensure that this procedure goes beyond the prototype stage and becomes a practical application.
3

SAR Remote Sensing of Canadian Coastal Waters using Total Variation Optimization Segmentation Approaches

Kwon, Tae-Jung 28 April 2011 (has links)
The synthetic aperture radar (SAR) onboard Earth observing satellites has been acknowledged as an integral tool for many applications in monitoring the marine environment. Some of these applications include regional sea-ice monitoring and detection of illegal or accidental oil discharges from ships. Nonetheless, a practicality of the usage of SAR images is greatly hindered by the presence of speckle noises. Such noise must be eliminated or reduced to be utilized in real-world applications to ensure the safety of the marine environment. Thus this thesis presents a novel two-phase total variation optimization segmentation approach to tackle such a challenging task. In the total variation optimization phase, the Rudin-Osher-Fatemi total variation model was modified and implemented iteratively to estimate the piecewise smooth state by minimizing the total variation constraints. In the finite mixture model classification phase, an expectation-maximization method was performed to estimate the final class likelihoods using a Gaussian mixture model. Then a maximum likelihood classification technique was utilized to obtain the final segmented result. For its evaluation, a synthetic image was used to test its effectiveness. Then it was further applied to two distinct real SAR images, X-band COSMO-SkyMed imagery containing verified oil-spills and C-band RADARSAT-2 imagery mainly containing two different sea-ice types to confirm its robustness. Furthermore, other well-established methods were compared with the proposed method to ensure its performance. With the advantage of a short processing time, the visual inspection and quantitative analysis including kappa coefficients and F1 scores of segmentation results confirm the superiority of the proposed method over other existing methods.
4

SAR Remote Sensing of Canadian Coastal Waters using Total Variation Optimization Segmentation Approaches

Kwon, Tae-Jung 28 April 2011 (has links)
The synthetic aperture radar (SAR) onboard Earth observing satellites has been acknowledged as an integral tool for many applications in monitoring the marine environment. Some of these applications include regional sea-ice monitoring and detection of illegal or accidental oil discharges from ships. Nonetheless, a practicality of the usage of SAR images is greatly hindered by the presence of speckle noises. Such noise must be eliminated or reduced to be utilized in real-world applications to ensure the safety of the marine environment. Thus this thesis presents a novel two-phase total variation optimization segmentation approach to tackle such a challenging task. In the total variation optimization phase, the Rudin-Osher-Fatemi total variation model was modified and implemented iteratively to estimate the piecewise smooth state by minimizing the total variation constraints. In the finite mixture model classification phase, an expectation-maximization method was performed to estimate the final class likelihoods using a Gaussian mixture model. Then a maximum likelihood classification technique was utilized to obtain the final segmented result. For its evaluation, a synthetic image was used to test its effectiveness. Then it was further applied to two distinct real SAR images, X-band COSMO-SkyMed imagery containing verified oil-spills and C-band RADARSAT-2 imagery mainly containing two different sea-ice types to confirm its robustness. Furthermore, other well-established methods were compared with the proposed method to ensure its performance. With the advantage of a short processing time, the visual inspection and quantitative analysis including kappa coefficients and F1 scores of segmentation results confirm the superiority of the proposed method over other existing methods.

Page generated in 0.1003 seconds