Spelling suggestions: "subject:"data authentication"" "subject:"data quthentication""
1 |
Study on Telemetry Data Authentication Protocol in Arms Control VerificationQiang, Huang, Fan, Yang 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The arms control verification activity is executed between countries, so various telemetry data will be remote-transmitted in the public signal channel and can be easily tampered. In order to secure this data’s authenticity and integrality, the paper has established a Multi-layer Data Authentication Protocol (MDAP) in which the key cryptographic technologies are digital signature and authentication. Meanwhile, overall evaluations of MDAP have been presented. We proved the MDAP is secure.
|
2 |
Data Security in Unattended Wireless Sensor NetworksVepanjeri Lokanadha Reddy, Sasi Kiran 14 January 2013 (has links)
In traditional Wireless Sensor network's (WSN's), the sink is the only unconditionally
trusted authority. If the sink is not connected to the nodes for a period of
time then the network is considered as unattended. In Unattended Wireless Sensor
Network (UWSN), a trusted mobile sink visits each node periodically to collect data.
This network differs from the traditional multi hop wireless sensor networks where
the nodes close to the sink deplete their power earlier than the other nodes. An
UWSN can prolong the life time of the network by saving the battery of the nodes
and also it can be deployed in environments where it is not practical for the sink to
be online all the time. Saving data in the memory of the nodes for a long time causes
security problems due to the lack of tamper-resistant hardware. Data collected by
the nodes has to be secured until the next visit of the sink. Securing the data from
an adversary in UWSN is a challenging task. We present two non-cryptographic algorithms
(DS-PADV and DS-RADV) to ensure data survivability in mobile UWSN.
The DS-PADV protects against proactive adversary which compromises nodes before
identifying its target. DS-RADV makes the network secure against reactive adversary
which compromises nodes after identifying the target. We also propose a data
authentication scheme against a mobile adversary trying to modify the data. The proposed
data authentication scheme uses inexpensive cryptographic primitives and few
message exchanges. The proposed solutions are analyzed both mathematically and
using simulations proving that the proposed solutions are better than the previous
ones in terms of security and communication overhead.
|
3 |
Data Security in Unattended Wireless Sensor NetworksVepanjeri Lokanadha Reddy, Sasi Kiran 14 January 2013 (has links)
In traditional Wireless Sensor network's (WSN's), the sink is the only unconditionally
trusted authority. If the sink is not connected to the nodes for a period of
time then the network is considered as unattended. In Unattended Wireless Sensor
Network (UWSN), a trusted mobile sink visits each node periodically to collect data.
This network differs from the traditional multi hop wireless sensor networks where
the nodes close to the sink deplete their power earlier than the other nodes. An
UWSN can prolong the life time of the network by saving the battery of the nodes
and also it can be deployed in environments where it is not practical for the sink to
be online all the time. Saving data in the memory of the nodes for a long time causes
security problems due to the lack of tamper-resistant hardware. Data collected by
the nodes has to be secured until the next visit of the sink. Securing the data from
an adversary in UWSN is a challenging task. We present two non-cryptographic algorithms
(DS-PADV and DS-RADV) to ensure data survivability in mobile UWSN.
The DS-PADV protects against proactive adversary which compromises nodes before
identifying its target. DS-RADV makes the network secure against reactive adversary
which compromises nodes after identifying the target. We also propose a data
authentication scheme against a mobile adversary trying to modify the data. The proposed
data authentication scheme uses inexpensive cryptographic primitives and few
message exchanges. The proposed solutions are analyzed both mathematically and
using simulations proving that the proposed solutions are better than the previous
ones in terms of security and communication overhead.
|
4 |
Data Security in Unattended Wireless Sensor NetworksVepanjeri Lokanadha Reddy, Sasi Kiran January 2013 (has links)
In traditional Wireless Sensor network's (WSN's), the sink is the only unconditionally
trusted authority. If the sink is not connected to the nodes for a period of
time then the network is considered as unattended. In Unattended Wireless Sensor
Network (UWSN), a trusted mobile sink visits each node periodically to collect data.
This network differs from the traditional multi hop wireless sensor networks where
the nodes close to the sink deplete their power earlier than the other nodes. An
UWSN can prolong the life time of the network by saving the battery of the nodes
and also it can be deployed in environments where it is not practical for the sink to
be online all the time. Saving data in the memory of the nodes for a long time causes
security problems due to the lack of tamper-resistant hardware. Data collected by
the nodes has to be secured until the next visit of the sink. Securing the data from
an adversary in UWSN is a challenging task. We present two non-cryptographic algorithms
(DS-PADV and DS-RADV) to ensure data survivability in mobile UWSN.
The DS-PADV protects against proactive adversary which compromises nodes before
identifying its target. DS-RADV makes the network secure against reactive adversary
which compromises nodes after identifying the target. We also propose a data
authentication scheme against a mobile adversary trying to modify the data. The proposed
data authentication scheme uses inexpensive cryptographic primitives and few
message exchanges. The proposed solutions are analyzed both mathematically and
using simulations proving that the proposed solutions are better than the previous
ones in terms of security and communication overhead.
|
Page generated in 0.1371 seconds