Spelling suggestions: "subject:"data fault"" "subject:"data vault""
1 |
Agile vs Hyper Agile : en studie av agilitet i metoder för datamodelleringSvensson, Martin January 2012 (has links)
Inom utvecklingen av de flesta typer av datorsystem används datormodeller för att strukturera lagringen och användningen av data. Likaså finns det flera olika datamodelleringsmetoder att välja bland för detta ändamål. I samarbete med ett företag har en fallstudie genomförts med syfte att undersöka hur agiliteten i två av dessa metoder påverkar utvecklingen av ett Data Warehouse (DW). De två datamodelleringsmetoder som undersökts är Data Vaulting och Hyper Agility och arbetet har fokuserat på att undersöka skillnaderna mellan dessa när det gäller mängden ETL-kod som måste skrivas, funktionaliteten i datatransformationerna, möjligheten till att uppdatera systemstrukturen samt den totala kostnaden för utvecklingen av DW-lösningen. Inom ramen för fallstudien har en litteraturstudie genomförts och kombinerats med material från sex intervjuer, där respondenterna varit konsulter såväl som företagsrepresentanter. Resultaten av fallstudien visar att respektive metods agilitet har en stor påverkan på den kod som utvecklas. Ju högre agilitet metoden har desto mindre kod, tid och andra resurser som krävs. Dock medför även en förhöjd agilitet större komplexitet samt eventuell risk för ett misslyckat utvecklingsprojekt.
|
2 |
A comparison of the impact of data vault and dimensional modelling on data warehouse performance and maintenance / Marius van SchalkwykVan Schalkwyk, Marius January 2014 (has links)
This study compares the impact of dimensional modelling and data vault modelling on the
performance and maintenance effort of data warehouses. Dimensional modelling is a data
warehouse modelling technique pioneered by Ralph Kimball in the 1980s that is much more
effective at querying large volumes of data in relational databases than third normal form data
models. Data vault modelling is a relatively new modelling technique for data warehouses that,
according to its creator Dan Linstedt, was created in order to address the weaknesses of
dimensional modelling. To date, no scientific comparison between the two modelling techniques
have been conducted.
A scientific comparison was achieved in this study, through the implementation of several
experiments. The experiments compared the data warehouse implementations based on
dimensional modelling techniques with data warehouse implementations based on data vault
modelling techniques in terms of load performance, query performance, storage requirements,
and flexibility to business requirements changes.
An analysis of the results of each of the experiments indicated that the data vault model
outperformed the dimensional model in terms of load performance and flexibility. However, the
dimensional model required less storage space than the data vault model. With regards to
query performance, no statistically significant differences existed between the two modelling
techniques. / MSc (Computer Science), North-West University, Potchefstroom Campus, 2014
|
3 |
A comparison of the impact of data vault and dimensional modelling on data warehouse performance and maintenance / Marius van SchalkwykVan Schalkwyk, Marius January 2014 (has links)
This study compares the impact of dimensional modelling and data vault modelling on the
performance and maintenance effort of data warehouses. Dimensional modelling is a data
warehouse modelling technique pioneered by Ralph Kimball in the 1980s that is much more
effective at querying large volumes of data in relational databases than third normal form data
models. Data vault modelling is a relatively new modelling technique for data warehouses that,
according to its creator Dan Linstedt, was created in order to address the weaknesses of
dimensional modelling. To date, no scientific comparison between the two modelling techniques
have been conducted.
A scientific comparison was achieved in this study, through the implementation of several
experiments. The experiments compared the data warehouse implementations based on
dimensional modelling techniques with data warehouse implementations based on data vault
modelling techniques in terms of load performance, query performance, storage requirements,
and flexibility to business requirements changes.
An analysis of the results of each of the experiments indicated that the data vault model
outperformed the dimensional model in terms of load performance and flexibility. However, the
dimensional model required less storage space than the data vault model. With regards to
query performance, no statistically significant differences existed between the two modelling
techniques. / MSc (Computer Science), North-West University, Potchefstroom Campus, 2014
|
Page generated in 0.0399 seconds