• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data-driven Methods in Mechanical Model Calibration and Prediction for Mesostructured Materials

Kim, Jee Yun 01 October 2018 (has links)
Mesoscale design involving control of material distribution pattern can create a statistically heterogeneous material system, which has shown increased adaptability to complex mechanical environments involving highly non-uniform stress fields. Advances in multi-material additive manufacturing can aid in this mesoscale design, providing voxel level control of material property. This vast freedom in design space also unlocks possibilities within optimization of the material distribution pattern. The optimization problem can be divided into a forward problem focusing on accurate predication and an inverse problem focusing on efficient search of the optimal design. In the forward problem, the physical behavior of the material can be modeled based on fundamental mechanics laws and simulated through finite element analysis (FEA). A major limitation in modeling is the unknown parameters in constitutive equations that describe the constituent materials; determining these parameters via conventional single material testing has been proven to be insufficient, which necessitates novel and effective approaches of calibration. A calibration framework based in Bayesian inference, which integrates data from simulations and physical experiments, has been applied to a study involving a mesostructured material fabricated by fused deposition modeling. Calibration results provide insights on what values these parameters converge to as well as which material parameters the model output has the largest dependence on while accounting for sources of uncertainty introduced during the modeling process. Additionally, this statistical formulation is able to provide quick predictions of the physical system by implementing a surrogate and discrepancy model. The surrogate model is meant to be a statistical representation of the simulation results, circumventing issues arising from computational load, while the discrepancy is aimed to account for the difference between the simulation output and physical experiments. In this thesis, this Bayesian calibration framework is applied to a material bending problem, where in-situ mechanical characterization data and FEA simulations based on constitutive modeling are combined to produce updated values of the unknown material parameters with uncertainty. / Master of Science / A material system obtained by applying a pattern of multiple materials has proven its adaptability to complex practical conditions. The layer by layer manufacturing process of additive manufacturing can allow for this type of design because of its control over where material can be deposited. This possibility then raises the question of how a multi-material system can be optimized in its design for a given application. In this research, we focus mainly on the problem of accurately predicting the response of the material when subjected to stimuli. Conventionally, simulations aided by finite element analysis (FEA) were relied upon for prediction, however it also presents many issues such as long run times and uncertainty in context-specific inputs of the simulation. We instead have adopted a framework using advanced statistical methodology able to combine both experimental and simulation data to significantly reduce run times as well as quantify the various uncertainties associated with running simulations.
2

Data-driven approaches to load modeling andmonitoring in smart energy systems

Tang, Guoming 23 January 2017 (has links)
In smart energy systems, load curve refers to the time series reported by smart meters, which indicate the energy consumption of customers over a certain period of time. The widespread use of load curve (data) in demand side management and demand response programs makes it one of the most important resources. To capture the load behavior or energy consumption patterns, load curve modeling is widely applied to help the utilities and residents make better plans and decisions. In this dissertation, with the help of load curve modeling, we focus on data-driven solutions to three load monitoring problems in different scenarios of smart energy systems, including residential power systems and datacenter power systems and covering the research fields of i) data cleansing, ii) energy disaggregation, and iii) fine-grained power monitoring. First, to improve the data quality for load curve modeling on the supply side, we challenge the regression-based approaches as an efficient way to load curve data cleansing and propose a new approach to analyzing and organizing load curve data. Our approach adopts a new view, termed portrait, on the load curve data by analyzing the inherent periodic patterns and re-organizing the data for ease of analysis. Furthermore, we introduce strategies to build virtual portrait datasets and demonstrate how this technique can be used for outlier detection in load curve. To identify the corrupted load curve data, we propose an appliance-driven approach that particularly takes advantage of information available on the demand side. It identifies corrupted data from the smart meter readings by solving a carefully-designed optimization problem. To solve the problem efficiently, we further develop a sequential local optimization algorithm that tackles the original NP-hard problem by solving an approximate problem in polynomial time. Second, to separate the aggregated energy consumption of a residential house into that of individual appliances, we propose a practical and universal energy disaggregation solution, only referring to the readily available information of appliances. Based on the sparsity of appliances' switching events, we first build a sparse switching event recovering (SSER) model. Then, by making use of the active epochs of switching events, we develop an efficient parallel local optimization algorithm to solve our model and obtain individual appliances' energy consumption. To explore the benefit of introducing low-cost energy meters for energy disaggregation, we propose a semi-intrusive appliance load monitoring (SIALM) approach for large-scale appliances situation. Instead of using only one meter, multiple meters are distributed in the power network to collect the aggregated load data from sub-groups of appliances. The proposed SSER model and parallel optimization algorithm are used for energy disaggregation within each sub-group of appliances. We further provide the sufficient conditions for unambiguous state recovery of multiple appliances, under which a minimum number of meters is obtained via a greedy clique-covering algorithm. Third, to achieve fine-grained power monitoring at server level in legacy datacenters, we present a zero-cost, purely software-based solution. With our solution, no power monitoring hardware is needed any more, leading to much reduced operating cost and hardware complexity. In detail, we establish power mapping functions (PMFs) between the states of servers and their power consumption, and infer the power consumption of each server with the aggregated power of the entire datacenter. We implement and evaluate our solution over a real-world datacenter with 326 servers. The results show that our solution can provide high precision power estimation at both the rack level and the server level. In specific, with PMFs including only two nonlinear terms, our power estimation i) at the rack level has mean relative error of 2.18%, and ii) at the server level has mean relative errors of 9.61% and 7.53% corresponding to the idle and peak power, respectively. / Graduate / 0984 / 0791 / 0800 / tangguo1999@gmail.com
3

Developing systems engineering and machine learning frameworks for the improvement of aviation maintenance

Elakramine, Fatine 12 May 2023 (has links) (PDF)
This dissertation develops systems engineering and machine learning models for aviation maintenance support. With the constant increase in demand for air travel, aviation organizations compete to maintain airworthy aircraft to ensure the safety of passengers. Given the importance of aircraft safety, the aviation sector constantly needs technologies to enhance the maintenance experience, ensure system safety, and limit aircraft downtime. Based on the current literature, the aviation maintenance sector still relies on outdated technologies to maintain aircraft maintenance documentation, including paper-based technical orders. Aviation maintenance documentation contains a mixture of structured and unstructured technical text, mainly inputted by operators, making them prone to error, misunderstanding communication, and inconsistency. This dissertation intends to develop decision support models based on systems engineering and artificial intelligence models that can automate the maintenance documentation system, extract useful information from maintenance work orders, and predict the aircraft's top degrader signals based on textual data. The first chapter of this dissertation introduces the significant setbacks of the aviation industry and provides a working ground for the following chapters. The dissertation's second chapter develops a system engineering framework using model-based systems engineering (MBSE) methodology to model the aviation maintenance process using the systems engineering language (SysML). The outcome of this framework is the design of an automated maintenance system model that can be used to automate maintenance documentation, making it less prone to error. The third chapter of the dissertation uses textual data in maintenance work orders to develop a hybrid approach that uses natural language processing (NLP) and transformer models to predict the readiness of a legacy aircraft. The model was tested using a real-life case study of the EA-6B military aircraft. The fourth chapter of this dissertation develops an ensemble transformer model based on three different transformer models. The ensemble model leverages the benefits of three different transformer architectures and is used to classify events based on an aviation log-based dataset. This dissertation's final and fifth chapter summarizes key findings, proposes future work directions, and provides the dissertation's limitations.

Page generated in 0.0733 seconds