Spelling suggestions: "subject:"datafusion"" "subject:"gata1fusion""
171 |
Vizualizace 3D scény pro ovládání robota / Visualization Environment for Robot Remote ControlBlahož, Vladimír January 2012 (has links)
This thesis presents possibilities of 3D point cloud and true colored digital video fusion that can be used in the process of robot teleoperation. Advantages of a 3D environment visualization combining more than one sensor data, tools to facilitate such data fusion, as well as two alternative practical implementations of combined data visualization are discussed. First proposed alternative estimates view frustum of the robot's camera and maps real colored video to a semi-transparent polygon placed in the view frustum. The second option is a direct coloring of the point cloud data creating a colored point cloud representing color as well as depth information about an environment.
|
172 |
Metody současné sebelokalizace a mapování pro hloubkové kamery / Methods for Simultaneous Self-localization and Mapping for Depht CamerasLigocki, Adam January 2017 (has links)
Tato diplomová práce se zabývá tvorbou fúze pozičních dat z existující realtimové im- plementace vizuálního SLAMu a kolové odometrie. Výsledkem spojení dat je potlačení nežádoucích chyb u každé ze zmíněných metod měření, díky čemuž je možné vytvořit přesnější 3D model zkoumaného prostředí. Práce nejprve uvádí teorií potřebnou pro zvládnutí problematiky 3D SLAMu. Dále popisuje vlastnosti použitého open source SLAM projektu a jeho jednotlivé softwarové úpravy. Následně popisuje principy spo- jení pozičních informací získaných vizuálními a odometrickými snímači, dále uvádí popis diferenciálního podvozku, který byl použit pro tvorbu kolové odometrie. Na závěr práce shrnuje výsledky dosažené datovou fúzí a srovnává je s původní přesností vizuálního SLAMu.
|
173 |
Integrade Linked Data / Linked Data IntegrationMichelfeit, Jan January 2013 (has links)
Linked Data have emerged as a successful publication format which could mean to structured data what Web meant to documents. The strength of Linked Data is in its fitness for integration of data from multiple sources. Linked Data integration opens door to new opportunities but also poses new challenges. New algorithms and tools need to be developed to cover all steps of data integration. This thesis examines the established data integration proceses and how they can be applied to Linked Data, with focus on data fusion and conflict resolution. Novel algorithms for Linked Data fusion are proposed and the task of supporting trust with provenance information and quality assessment of fused data is addressed. The proposed algorithms are implemented as part of a Linked Data integration framework ODCleanStore.
|
174 |
Information Acquisition in Data Fusion SystemsJohansson, Ronnie January 2003 (has links)
By purposefully utilising sensors, for instance by a datafusion system, the state of some system-relevant environmentmight be adequately assessed to support decision-making. Theever increasing access to sensors o.ers great opportunities,but alsoincurs grave challenges. As a result of managingmultiple sensors one can, e.g., expect to achieve a morecomprehensive, resolved, certain and more frequently updatedassessment of the environment than would be possible otherwise.Challenges include data association, treatment of con.ictinginformation and strategies for sensor coordination. We use the term information acquisition to denote the skillof a data fusion system to actively acquire information. Theaim of this thesis is to instructively situate that skill in ageneral context, explore and classify related research, andhighlight key issues and possible future work. It is our hopethat this thesis will facilitate communication, understandingand future e.orts for information acquisition. The previously mentioned trend towards utilisation of largesets of sensors makes us especially interested in large-scaleinformation acquisition, i.e., acquisition using many andpossibly spatially distributed and heterogeneous sensors. Information acquisition is a general concept that emerges inmany di.erent .elds of research. In this thesis, we surveyliterature from, e.g., agent theory, robotics and sensormanagement. We, furthermore, suggest a taxonomy of theliterature that highlights relevant aspects of informationacquisition. We describe a function, perception management (akin tosensor management), which realizes information acquisition inthe data fusion process and pertinent properties of itsexternal stimuli, sensing resources, and systemenvironment. An example of perception management is also presented. Thetask is that of managing a set of mobile sensors that jointlytrack some mobile targets. The game theoretic algorithmsuggested for distributing the targets among the sensors proveto be more robust to sensor failure than a measurement accuracyoptimal reference algorithm. <b>Keywords:</b>information acquisition, sensor management,resource management, information fusion, data fusion,perception management, game theory, target tracking / NR 20140805
|
175 |
Malicious user attacks in decentralised cognitive radio networksSivakumaran, Arun January 2020 (has links)
Cognitive radio networks (CRNs) have emerged as a solution for the looming spectrum crunch caused
by the rapid adoption of wireless devices over the previous decade. This technology enables efficient
spectrum utility by dynamically reusing existing spectral bands. A CRN achieves this by requiring its
users – called secondary users (SUs) – to measure and opportunistically utilise the band of a legacy
broadcaster – called a primary user (PU) – in a process called spectrum sensing. Sensing requires the
distribution and fusion of measurements from all SUs, which is facilitated by a variety of architectures
and topologies.
CRNs possessing a central computation node are called centralised networks, while CRNs composed of
multiple computation nodes are called decentralised networks. While simpler to implement, centralised
networks are reliant on the central node – the entire network fails if this node is compromised. In
contrast, decentralised networks require more sophisticated protocols to implement, while offering
greater robustness to node failure. Relay-based networks, a subset of decentralised networks, distribute
the computation over a number of specialised relay nodes – little research exists on spectrum sensing
using these networks. CRNs are vulnerable to unique physical layer attacks targeted at their spectrum sensing functionality.
One such attack is the Byzantine attack; these attacks occur when malicious SUs (MUs) alter their
sensing reports to achieve some goal (e.g. exploitation of the CRN’s resources, reduction of the CRN’s
sensing performance, etc.). Mitigation strategies for Byzantine attacks vary based on the CRN’s
network architecture, requiring defence algorithms to be explored for all architectures. Because of the
sparse literature regarding relay-based networks, a novel algorithm – suitable for relay-based networks
– is proposed in this work. The proposed algorithm performs joint MU detection and secure sensing by
large-scale probabilistic inference of a statistical model.
The proposed algorithm’s development is separated into the following two parts.
• The first part involves the construction of a probabilistic graphical model representing the
likelihood of all possible outcomes in the sensing process of a relay-based network. This is
done by discovering the conditional dependencies present between the variables of the model.
Various candidate graphical models are explored, and the mathematical description of the chosen
graphical model is determined.
• The second part involves the extraction of information from the graphical model to provide
utility for sensing. Marginal inference is used to enable this information extraction. Belief
propagation is used to infer the developed graphical model efficiently. Sensing is performed by
exchanging the intermediate belief propagation computations between the relays of the CRN.
Through a performance evaluation, the proposed algorithm was found to be resistant to probabilistic
MU attacks of all frequencies and proportions. The sensing performance was highly sensitive to
the placement of the relays and honest SUs, with the performance improving when the number of
relays was increased. The transient behaviour of the proposed algorithm was evaluated in terms of its
dynamics and computational complexity, with the algorithm’s results deemed satisfactory in this regard.
Finally, an analysis of the effectiveness of the graphical model’s components was conducted, with a
few model components accounting for most of the performance, implying that further simplifications
to the proposed algorithm are possible. / Dissertation (MEng)--University of Pretoria, 2020. / Electrical, Electronic and Computer Engineering / MEng / Unrestricted
|
176 |
Fourier Series Applications in Multitemporal Remote Sensing Analysis using Landsat DataBrooks, Evan B. 27 June 2013 (has links)
Researchers now have unprecedented access to free Landsat data, enabling detailed monitoring of the Earth's land surface and vegetation. There are gaps in the data, due in part to cloud cover. The gaps are aperiodic and localized, forcing any detailed multitemporal analysis based on Landsat data to compensate.
Harmonic regression approximates Landsat data for any point in time with minimal training images and reduced storage requirements. In two study areas in North Carolina, USA, harmonic regression approaches were least as good at simulating missing data as STAR-FM for images from 2001. Harmonic regression had an R^2"0.9 over three quarters of all pixels. It gave the highest R_Predicted^2 values on two thirds of the pixels. Applying harmonic regression with the same number of harmonics to consecutive years yielded an improved fit, R^2"0.99 for most pixels.
We next demonstrate a change detection method based on exponentially weighted moving average (EWMA) charts of harmonic residuals. In the process, a data-driven cloud filter is created, enabling use of partially clouded data. The approach is shown capable of detecting thins and subtle forest degradations in Alabama, USA, considerably finer than the Landsat spatial resolution in an on-the-fly fashion, with new images easily incorporated into the algorithm. EWMA detection accurately showed the location, timing, and magnitude of 85% of known harvests in the study area, verified by aerial imagery.
We use harmonic regression to improve the precision of dynamic forest parameter estimates, generating a robust time series of vegetation index values. These values are classified into strata maps in Alabama, USA, depicting regions of similar growth potential. These maps are applied to Forest Service Forest Inventory and Analysis (FIA) plots, generating post-stratified estimates of static and dynamic forest parameters. Improvements to efficiency for all parameters were such that a comparable random sample would require at least 20% more sampling units, with the improvement for the growth parameter requiring a 50% increase.
These applications demonstrate the utility of harmonic regression for Landsat data. They suggest further applications in environmental monitoring and improved estimation of landscape parameters, critical to improving large-scale models of ecosystems and climate effects. / Ph. D.
|
177 |
Etude et quantification de la contribution des systèmes de perception multimodale assistés par des informations de contexte pour la détection et le suivi d'objets dynamiques / Contributions of context-aided multimodal perception systems fordetection and tracking of moving objectsSattarov, Egor 09 December 2016 (has links)
Cette thèse a pour but d'étudier et de quantifier la contribution de la perception multimodale assistée par le contexte pour détecter et suivre des objets en mouvement. Cette étude sera appliquée à la détection et la reconnaissance des objets pertinents dans les environnements de la circulation pour les véhicules intelligents (VI). Les résultats à obtenir devront permettre de transposer le concept proposé à un ensemble plus large de capteurs et de classes d'objets en utilisant une approche système intégrative qui implique des méthodes d'apprentissage. En particulier, ces méthodes d'apprentissage vont examiner comment l'implantation dans un système intégré, qui prévoie une multitude des sources de données différentes, peut conduire à apprendre 1) sans ou avec une supervision limitée, réduite en exploitant des corrélations 2) de façon incrémentale à la connaissance stockée au lieu de faire un entraînement complet à chaque fois qu’une nouvelle donnée arrive 3) collectivement à chaque instant d'apprentissage dans le système entraîné d'une manière qui assure approximativement une fusion optimale. Concrètement, le couplage fort entre les classifier des objets en modalités multiples aussi bien que l'extraction du contexte de la géométrie de la scène sont à étudier: d'abord en théorie, après en application du trafic routier. La nouveauté de l'approche d'intégration envisagée se pose dans le couplage fort entre les composants du système, tels que la segmentation, le suivi des objets, l'estimation de la géométrie de la scène et la catégorisation des objets basée sur la stratégie de l'inférence probabiliste. Une telle stratégie caractérise des systèmes où toutes les composants de perception émettent et reçoivent les distributions des résultats possibles avec leur score de croyance probabiliste attribué. De cette façon, chaque composant de traitement peut prendre en compte les résultats des autres composants au niveau plus bas par rapport aux combinaisons des résultats finaux. Cela diminue beaucoup le temps et les ressources pour le calcul, quand les techniques de l'application de l'inférence Bayésienne garantissent que les données d'entrée peu plausible n'apportent pas des impacts négatifs. / This thesis project will investigate and quantify the contribution of context-aided multimodal perception for detecting and tracking moving objects. This research study will be applied to the detection and recognition ofrelevant objects in road traffic environments for Intelligent Vehicles (IV). The results to be obtained will allow us to transpose the proposed concept to a wide range of state-of-the-art sensors and object classes by means of an integrative system approach involving learning methods. In particular, such learning methods will investigate how the embedding into an embodied system providing a multitude of different data sources, can be harnessed to learn 1) without, or with reduced, explicit supervision by exploiting correlations 2) incrementally, by adding to existing knowledge instead of complete retraining every time new data arrive 3) collectively, each learning instance in the system being trained in a way that ensures approximately optimal fusion. Concretely, a tight coupling between object classifiers in multiple modalities as well as geometric scene context extraction will be studied, first in theory, then in the context of road traffic. The novelty of the envisioned integration approach lies in the tight coupling between system components such as object segmentation, object tracking, scene geometry estimation and object categorization based on a probabilistic inference strategy. Such a strategy characterizes systems where all perception components broadcast and receive distributions of multiple possible results together with a probabilistic belief score. In this way, each processing component can take into account the results of other components at a much earlier stage (as compared to just combining final results), thus hugely increasing its computation power, while the application of Bayesian inference techniques will ensure that implausible inputs do not cause negative effects.
|
178 |
Study of vehicle localization optimization with visual odometry trajectory tracking / Fusion de données pour la localisation de véhicule par suivi de trajectoire provenant de l'odométrie visuelleAwang Salleh, Dayang Nur Salmi Dharmiza 19 December 2018 (has links)
Au sein des systèmes avancés d’aide à la conduite (Advanced Driver Assistance Systems - ADAS) pour les systèmes de transport intelligents (Intelligent Transport Systems - ITS), les systèmes de positionnement, ou de localisation, du véhicule jouent un rôle primordial. Le système GPS (Global Positioning System) largement employé ne peut donner seul un résultat précis à cause de facteurs extérieurs comme un environnement contraint ou l’affaiblissement des signaux. Ces erreurs peuvent être en partie corrigées en fusionnant les données GPS avec des informations supplémentaires provenant d'autres capteurs. La multiplication des systèmes d’aide à la conduite disponibles dans les véhicules nécessite de plus en plus de capteurs installés et augmente le volume de données utilisables. Dans ce cadre, nous nous sommes intéressés à la fusion des données provenant de capteurs bas cout pour améliorer le positionnement du véhicule. Parmi ces sources d’information, en parallèle au GPS, nous avons considérés les caméras disponibles sur les véhicules dans le but de faire de l’odométrie visuelle (Visual Odometry - VO), couplée à une carte de l’environnement. Nous avons étudié les caractéristiques de cette trajectoire reconstituée dans le but d’améliorer la qualité du positionnement latéral et longitudinal du véhicule sur la route, et de détecter les changements de voies possibles. Après avoir été fusionnée avec les données GPS, cette trajectoire générée est couplée avec la carte de l’environnement provenant d’Open-StreetMap (OSM). L'erreur de positionnement latérale est réduite en utilisant les informations de distribution de voie fournies par OSM, tandis que le positionnement longitudinal est optimisé avec une correspondance de courbes entre la trajectoire provenant de l’odométrie visuelle et les routes segmentées décrites dans OSM. Pour vérifier la robustesse du système, la méthode a été validée avec des jeux de données KITTI en considérant des données GPS bruitées par des modèles de bruits usuels. Plusieurs méthodes d’odométrie visuelle ont été utilisées pour comparer l’influence de la méthode sur le niveau d'amélioration du résultat après fusion des données. En utilisant la technique d’appariement des courbes que nous proposons, la précision du positionnement connait une amélioration significative, en particulier pour l’erreur longitudinale. Les performances de localisation sont comparables à celles des techniques SLAM (Simultaneous Localization And Mapping), corrigeant l’erreur d’orientation initiale provenant de l’odométrie visuelle. Nous avons ensuite employé la trajectoire provenant de l’odométrie visuelle dans le cadre de la détection de changement de voie. Cette indication est utile dans pour les systèmes de navigation des véhicules. La détection de changement de voie a été réalisée par une somme cumulative et une technique d’ajustement de courbe et obtient de très bon taux de réussite. Des perspectives de recherche sur la stratégie de détection sont proposées pour déterminer la voie initiale du véhicule. En conclusion, les résultats obtenus lors de ces travaux montrent l’intérêt de l’utilisation de la trajectoire provenant de l’odométrie visuelle comme source d’information pour la fusion de données à faible coût pour la localisation des véhicules. Cette source d’information provenant de la caméra est complémentaire aux données d’images traitées qui pourront par ailleurs être utilisées pour les différentes taches visée par les systèmes d’aides à la conduite. / With the growing research on Advanced Driver Assistance Systems (ADAS) for Intelligent Transport Systems (ITS), accurate vehicle localization plays an important role in intelligent vehicles. The Global Positioning System (GPS) has been widely used but its accuracy deteriorates and susceptible to positioning error due to factors such as the restricting environments that results in signal weakening. This problem can be addressed by integrating the GPS data with additional information from other sensors. Meanwhile, nowadays, we can find vehicles equipped with sensors for ADAS applications. In this research, fusion of GPS with visual odometry (VO) and digital map is proposed as a solution to localization improvement with low-cost data fusion. From the published works on VO, it is interesting to know how the generated trajectory can further improve vehicle localization. By integrating the VO output with GPS and OpenStreetMap (OSM) data, estimates of vehicle position on the map can be obtained. The lateral positioning error is reduced by utilizing lane distribution information provided by OSM while the longitudinal positioning is optimized with curve matching between VO trajectory trail and segmented roads. To observe the system robustness, the method was validated with KITTI datasets tested with different common GPS noise. Several published VO methods were also used to compare improvement level after data fusion. Validation results show that the positioning accuracy achieved significant improvement especially for the longitudinal error with curve matching technique. The localization performance is on par with Simultaneous Localization and Mapping (SLAM) SLAM techniques despite the drift in VO trajectory input. The research on employability of VO trajectory is extended for a deterministic task in lane-change detection. This is to assist the routing service for lane-level direction in navigation. The lane-change detection was conducted by CUSUM and curve fitting technique that resulted in 100% successful detection for stereo VO. Further study for the detection strategy is however required to obtain the current true lane of the vehicle for lane-level accurate localization. With the results obtained from the proposed low-cost data fusion for localization, we see a bright prospect of utilizing VO trajectory with information from OSM to improve the performance. In addition to obtain VO trajectory, the camera mounted on the vehicle can also be used for other image processing applications to complement the system. This research will continue to develop with future works concluded in the last chapter of this thesis.
|
179 |
Managing trust and reliability for indoor tracking systemsRybarczyk, Ryan Thomas January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Indoor tracking is a challenging problem. The level of accepted error is on a much
smaller scale than that of its outdoor counterpart. While the global positioning system has
become omnipresent, and a widely accepted outdoor tracking system it has limitations in
indoor environments due to loss or degradation of signal. Many attempts have been made
to address this challenge, but currently none have proven to be the de-facto standard. In
this thesis, we introduce the concept of opportunistic tracking in which tracking takes
place with whatever sensing infrastructure is present – static or mobile, within a given
indoor environment. In this approach many of the challenges (e.g., high cost, infeasible
infrastructure deployment, etc.) that prohibit usage of existing systems in typical
application domains (e.g., asset tracking, emergency rescue) are eliminated. Challenges
do still exist when it comes to provide an accurate positional estimate of an entities
location in an indoor environment, namely: sensor classification, sensor selection, and
multi-sensor data fusion. We propose an enhanced tracking framework that through the
infusion of QoS-based selection criteria of trust and reliability we can improve the overall
accuracy of the tracking estimate. This improvement is predicated on the introduction of
learning techniques to classify sensors that are dynamically discovered as part of this opportunistic tracking approach. This classification allows for sensors to be properly
identified and evaluated based upon their specific behavioral characteristics through
performance evaluation. This in-depth evaluation of sensors provides the basis for
improving the sensor selection process. A side effect of obtaining this improved accuracy
is the cost, found in the form of system runtime. This thesis provides a solution for this
tradeoff between accuracy and cost through an optimization function that analyzes this
tradeoff in an effort to find the optimal subset of sensors to fulfill the goal of tracking an
object as it moves indoors. We demonstrate that through this improved sensor
classification, selection, data fusion, and tradeoff optimization we can provide an
improvement, in terms of accuracy, over other existing indoor tracking systems.
|
180 |
Design and development of a work-in-progress, low-cost Earth Observation multispectral satellite for use on the International Space StationAhn, Byung Joon 23 September 2020 (has links)
No description available.
|
Page generated in 0.0485 seconds