• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hierarchical Bayesian Dataset Selection

Zhou, Xiaona 05 1900 (has links)
Despite the profound impact of deep learning across various domains, supervised model training critically depends on access to large, high-quality datasets, which are often challenging to identify. To address this, we introduce <b>H</b>ierarchical <b>B</b>ayesian <b>D</b>ataset <b>S</b>election (<b>HBDS</b>), the first dataset selection algorithm that utilizes hierarchical Bayesian modeling, designed for collaborative data-sharing ecosystems. The proposed method efficiently decomposes the contributions of dataset groups and individual datasets to local model performance using Bayesian updates with small data samples. Our experiments on two benchmark datasets demonstrate that HBDS not only offers a computationally lightweight solution but also enhances interpretability compared to existing data selection methods, by revealing deep insights into dataset interrelationships through learned posterior distributions. HBDS outperforms traditional non-hierarchical methods by correctly identifying all relevant datasets, achieving optimal accuracy with fewer computational steps, even when initial model accuracy is low. Specifically, HBDS surpasses its non-hierarchical counterpart by 1.8% on DIGIT-FIVE and 0.7% on DOMAINNET, on average. In settings with limited resources, HBDS achieves a 6.9% higher accuracy than its non-hierarchical counterpart. These results confirm HBDS's effectiveness in identifying datasets that improve the accuracy and efficiency of deep learning models when collaborative data utilization is essential. / Master of Science / Deep learning technologies have revolutionized many domains and applications, from voice recognition in smartphones to automated recommendations on streaming services. However, the success of these technologies heavily relies on having access to large and high-quality datasets. In many cases, selecting the right datasets can be a daunting challenge. To tackle this, we have developed a new method that can quickly figure out which datasets or groups of datasets contribute most to improving the performance of a model with only a small amount of data needed. Our tests prove that this method is not only effective and light on computation but also helps us understand better how different datasets relate to each other.
2

Dataset selection for aggregate model implementation in predictive data mining

Lutu, P.E.N. (Patricia Elizabeth Nalwoga) 15 November 2010 (has links)
Data mining has become a commonly used method for the analysis of organisational data, for purposes of summarizing data in useful ways and identifying non-trivial patterns and relationships in the data. Given the large volumes of data that are collected by business, government, non-government and scientific research organizations, a major challenge for data mining researchers and practitioners is how to select relevant data for analysis in sufficient quantities, in order to meet the objectives of a data mining task. This thesis addresses the problem of dataset selection for predictive data mining. Dataset selection was studied in the context of aggregate modeling for classification. The central argument of this thesis is that, for predictive data mining, it is possible to systematically select many dataset samples and employ different approaches (different from current practice) to feature selection, training dataset selection, and model construction. When a large amount of information in a large dataset is utilised in the modeling process, the resulting models will have a high level of predictive performance and should be more reliable. Aggregate classification models, also known as ensemble classifiers, have been shown to provide a high level of predictive accuracy on small datasets. Such models are known to achieve a reduction in the bias and variance components of the prediction error of a model. The research for this thesis was aimed at the design of aggregate models and the selection of training datasets from large amounts of available data. The objectives for the model design and dataset selection were to reduce the bias and variance components of the prediction error for the aggregate models. Design science research was adopted as the paradigm for the research. Large datasets obtained from the UCI KDD Archive were used in the experiments. Two classification algorithms: See5 for classification tree modeling and K-Nearest Neighbour, were used in the experiments. The two methods of aggregate modeling that were studied are One-Vs-All (OVA) and positive-Vs-negative (pVn) modeling. While OVA is an existing method that has been used for small datasets, pVn is a new method of aggregate modeling, proposed in this thesis. Methods for feature selection from large datasets, and methods for training dataset selection from large datasets, for OVA and pVn aggregate modeling, were studied. The experiments of feature selection revealed that the use of many samples, robust measures of correlation, and validation procedures result in the reliable selection of relevant features for classification. A new algorithm for feature subset search, based on the decision rule-based approach to heuristic search, was designed and the performance of this algorithm was compared to two existing algorithms for feature subset search. The experimental results revealed that the new algorithm makes better decisions for feature subset search. The information provided by a confusion matrix was used as a basis for the design of OVA and pVn base models which aren combined into one aggregate model. A new construct called a confusion graph was used in conjunction with new algorithms for the design of pVn base models. A new algorithm for combining base model predictions and resolving conflicting predictions was designed and implemented. Experiments to study the performance of the OVA and pVn aggregate models revealed the aggregate models provide a high level of predictive accuracy compared to single models. Finally, theoretical models to depict the relationships between the factors that influence feature selection and training dataset selection for aggregate models are proposed, based on the experimental results. / Thesis (PhD)--University of Pretoria, 2010. / Computer Science / unrestricted

Page generated in 0.1043 seconds