• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Datenqualität in Sensordatenströmen

Klein, Anja 19 June 2009 (has links)
Die stetige Entwicklung intelligenter Sensorsysteme erlaubt die Automatisierung und Verbesserung komplexer Prozess- und Geschäftsentscheidungen in vielfältigen Anwendungsszenarien. Sensoren können zum Beispiel zur Bestimmung optimaler Wartungstermine oder zur Steuerung von Produktionslinien genutzt werden. Ein grundlegendes Problem bereitet dabei die Sensordatenqualität, die durch Umwelteinflüsse und Sensorausfälle beschränkt wird. Ziel der vorliegenden Arbeit ist die Entwicklung eines Datenqualitätsmodells, das Anwendungen und Datenkonsumenten Qualitätsinformationen für eine umfassende Bewertung unsicherer Sensordaten zur Verfügung stellt. Neben Datenstrukturen zur effizienten Datenqualitätsverwaltung in Datenströmen und Datenbanken wird eine umfassende Datenqualitätsalgebra zur Berechnung der Qualität von Datenverarbeitungsergebnissen vorgestellt. Darüber hinaus werden Methoden zur Datenqualitätsverbesserung entwickelt, die speziell auf die Anforderungen der Sensordatenverarbeitung angepasst sind. Die Arbeit wird durch Ansätze zur nutzerfreundlichen Datenqualitätsanfrage und -visualisierung vervollständigt.
12

Laufzeitadaption von zustandsbehafteten Datenstromoperatoren

Wolf, Bernhard 10 December 2012 (has links)
Änderungen von Datenstromanfragen zur Laufzeit werden insbesondere durch zustandsbehaftete Datenstromoperatoren erschwert. Da die Zustände im Arbeitsspeicher abgelegt sind und bei einem Neustart verloren gehen, wurden in der Vergangenheit Migrationsverfahren entwickelt, um die inneren Operatorzustände bei einem Änderungsvorgang zu erhalten. Die Migrationsverfahren basieren auf zwei unterschiedlichen Ansätzen - Zustandstransfer und Parallelausführung - sind jedoch aufgrund ihrer Realisierung auf eine zentrale Ausführung beschränkt. Mit wachsenden Anforderungen in Bezug auf Datenmengen und Antwortzeiten werden Datenstromsysteme vermehrt verteilt ausgeführt, beispielsweise durch Sensornetze oder verteilte IT-Systeme. Zur Anpassung der Anfragen zur Laufzeit sind existierende Migrationsstrategien nicht oder nur bedingt geeignet. Diese Arbeit leistet einen Beitrag zur Lösung dieser Problematik und zur Optimierung der Migration in Datenstromsystemen. Am Beispiel von präventiven Instandhaltungsstrategien in Fabrikumgebungen werden Anforderungen für die Datenstromverarbeitung und insbesondere für die Migration abgeleitet. Das generelle Ziel ist demnach eine möglichst schnelle Migration bei gleichzeitiger Ergebnisausgabe. In einer detaillierten Analyse der existierenden Migrationsstrategien werden deren Stärken und Schwächen bezüglich der gestellten Anforderungen diskutiert. Für die Adaption von laufenden Datenstromanfragen wird eine allgemeine Methodik vorgestellt, welche als Basis für die neuen Strategien dient. Diese Adaptionsmethodik unterstützt zwei Verfahren zur Bestimmung von Migrationskonfigurationen - ein numerisches Verfahren für periodische Datenströme und ein heuristisches Verfahren, welches auch auf aperiodische Datenströme angewendet werden kann. Eine wesentliche Funktionalität zur Minimierung der Migrationsdauer ist dabei die Beschränkung auf notwendige Zustandswerte, da in verteilten Umgebungen eine Übertragungszeit für den Zustandstransfer veranschlagt werden muss - zwei Aspekte, die bei existierenden Verfahren nicht berücksichtigt werden. Durch die Verwendung von neu entwickelten Zustandstransfermethoden kann zudem die Übertragungsreihenfolge der einzelnen Zustandswerte beeinflusst werden. Die Konzepte wurden in einem OSGi-basierten Prototyp implementiert und zudem simulativ analysiert. Mit einer umfassenden Evaluierung wird die Funktionsfähigkeit aller Komponenten und Konzepte demonstriert. Der Performance-Vergleich zwischen den existierenden und den neuen Migrationsstrategien fällt deutlich zu Gunsten der neuen Strategien aus, die zudem in der Lage sind, alle Anforderungen zu erfüllen.
13

State Management for Efficient Event Pattern Detection

Zhao, Bo 20 May 2022 (has links)
Event Stream Processing (ESP) Systeme überwachen kontinuierliche Datenströme, um benutzerdefinierte Queries auszuwerten. Die Herausforderung besteht darin, dass die Queryverarbeitung zustandsbehaftet ist und die Anzahl von Teilübereinstimmungen mit der Größe der verarbeiteten Events exponentiell anwächst. Die Dynamik von Streams und die Notwendigkeit, entfernte Daten zu integrieren, erschweren die Zustandsverwaltung. Erstens liefern heterogene Eventquellen Streams mit unvorhersehbaren Eingaberaten und Queryselektivitäten. Während Spitzenzeiten ist eine erschöpfende Verarbeitung unmöglich, und die Systeme müssen auf eine Best-Effort-Verarbeitung zurückgreifen. Zweitens erfordern Queries möglicherweise externe Daten, um ein bestimmtes Event für eine Query auszuwählen. Solche Abhängigkeiten sind problematisch: Das Abrufen der Daten unterbricht die Stream-Verarbeitung. Ohne eine Eventauswahl auf Grundlage externer Daten wird das Wachstum von Teilübereinstimmungen verstärkt. In dieser Dissertation stelle ich Strategien für optimiertes Zustandsmanagement von ESP Systemen vor. Zuerst ermögliche ich eine Best-Effort-Verarbeitung mittels Load Shedding. Dabei werden sowohl Eingabeeevents als auch Teilübereinstimmungen systematisch verworfen, um eine Latenzschwelle mit minimalem Qualitätsverlust zu garantieren. Zweitens integriere ich externe Daten, indem ich das Abrufen dieser von der Verwendung in der Queryverarbeitung entkoppele. Mit einem effizienten Caching-Mechanismus vermeide ich Unterbrechungen durch Übertragungslatenzen. Dazu werden externe Daten basierend auf ihrer erwarteten Verwendung vorab abgerufen und mittels Lazy Evaluation bei der Eventauswahl berücksichtigt. Dabei wird ein Kostenmodell verwendet, um zu bestimmen, wann welche externen Daten abgerufen und wie lange sie im Cache aufbewahrt werden sollen. Ich habe die Effektivität und Effizienz der vorgeschlagenen Strategien anhand von synthetischen und realen Daten ausgewertet und unter Beweis gestellt. / Event stream processing systems continuously evaluate queries over event streams to detect user-specified patterns with low latency. However, the challenge is that query processing is stateful and it maintains partial matches that grow exponentially in the size of processed events. State management is complicated by the dynamicity of streams and the need to integrate remote data. First, heterogeneous event sources yield dynamic streams with unpredictable input rates, data distributions, and query selectivities. During peak times, exhaustive processing is unreasonable, and systems shall resort to best-effort processing. Second, queries may require remote data to select a specific event for a pattern. Such dependencies are problematic: Fetching the remote data interrupts the stream processing. Yet, without event selection based on remote data, the growth of partial matches is amplified. In this dissertation, I present strategies for optimised state management in event pattern detection. First, I enable best-effort processing with load shedding that discards both input events and partial matches. I carefully select the shedding elements to satisfy a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate remote data, I decouple the fetching of remote data from its use in query evaluation by a caching mechanism. To this end, I hide the transmission latency by prefetching remote data based on anticipated use and by lazy evaluation that postpones the event selection based on remote data to avoid interruptions. A cost model is used to determine when to fetch which remote data items and how long to keep them in the cache. I evaluated the above techniques with queries over synthetic and real-world data. I show that the load shedding technique significantly improves the recall of pattern detection over baseline approaches, while the technique for remote data integration significantly reduces the pattern detection latency.

Page generated in 0.0903 seconds