• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectroscopic & thermodynamic investigations of the physical basis of anhydrobiosis in caenorhabditis elegans dauer larvae

Abu Sharkh, Sawsan E. 17 April 2015 (has links) (PDF)
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic, suspended animation state. Distributed to various taxa of life, these organisms have evolved strategies to efficiently protect their cell membranes and proteins against extreme water loss. At the molecular level, a variety of mutually non-exclusive mechanisms have been proposed to account particularly for preserving the integrity of the cell membranes in the desiccated state. Recently, it has been shown that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation for harsh desiccation (preconditioning), thereby allowing for a reversible desiccation / rehydration cycle. Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, the dauer larvae exhibit a systemic chemical response upon preconditioning by dramatically reducing their phosphatidylcholine (PC) content. The C. elegans strain daf-2 was chosen for these studies, because it forms a constitutive dauer state under appropriate growth conditions. Using complementary approaches such as chemical analysis, time-resolved FTIR-spectroscopy, Langmuir-Blodgett monolayers, and fluorescence spectroscopy, it is shown that this chemical adaptation of the phospholipid (PL) composition has key consequences for their interaction with trehalose. Infrared-spectroscopic experiments were designed and automated to particularly address structural changes during fast hydration transients. Importantly, the coupling of headgroup hydration to acyl chain order at low humidity was found to be altered on the environmentally relevant time scale of seconds. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates during lyotropic transitions and sub- headgroup H-bond interactions as compared to PLs from non-preconditioned larvae. The effects are related to the intrinsically different hydration properties of PC and phosphatidylethanolamine (PE) headgroups, and lead to a larger hydration-dependent rearrangement of trehalose-mediated H-bond network in PLs from preconditioned larvae. This results in a lipid compressibility modulus of ∼0.5 mN/m and 1.2 mN/m for PLs derived from preconditioned and non-preconditioned larvae, respectively. The ensemble of these changes evidences a genetically controlled chemical tuning of the native lipid composition of a true anhydrobiote to functionally interact with a ubiquitous protective disaccharide. The biological relevance of this adaptation is the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose- containing cells during fast rehydration. Finally, the thermo-tropic lipid phase behavior was studied by temperature-dependent ATR-FTIR and fluorescence spectroscopy of LAURDAN-labeled PLs. The results show that the adaptation to drought, which is accomplished to a significant part by the reduction of the PC content, relies on reducing thermo-tropic and enhancing lyotropic phase transitions. The data are interpreted on a molecular level emphasizing the influence of trehalose on the lipid phase transition under biologically relevant conditions by a detailed analysis of the lipid C=O H-bond environment. The salient feature of the deduced model is a dynamic interaction of trehalose at the PL headgroup region. It is proposed here that the location of trehalose is changed from a more peripheral to a more sub-headgroup-associated position. This appears to be particularly pronounced in PLs from preconditioned worms. The sugar slides deeper into the inter-headgroup space during hydration and thereby supports a quick lateral expansion such that membranes can more readily adapt to the volume changes in the swelling biological material at reduced humidity. The data show that the nature of the headgroup is crucial for its interaction with trehalose and there is no general mechanism by which the sugar affects lipidic phase transitions. The intercalation into a phosphatidylethanolamine-rich membrane appears to be unique. In this case, neither the phase transition temperature nor its width is affected by the protective sugar, whereas strong effects on these parameters were observed with other model lipids. With respect to membrane preservation, desiccation tolerance may be largely dependent on reducing phosphatidylcholine and increasing the phsophatidylethanolamine content in order to optimize trehalose headgroup interactions. As a consequence, fast mechanical adaptation of cell membranes to hydration-induced strain can be realized.
2

Spectroscopic & thermodynamic investigations of the physical basis of anhydrobiosis in caenorhabditis elegans dauer larvae

Abu Sharkh, Sawsan E. 09 April 2015 (has links)
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic, suspended animation state. Distributed to various taxa of life, these organisms have evolved strategies to efficiently protect their cell membranes and proteins against extreme water loss. At the molecular level, a variety of mutually non-exclusive mechanisms have been proposed to account particularly for preserving the integrity of the cell membranes in the desiccated state. Recently, it has been shown that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation for harsh desiccation (preconditioning), thereby allowing for a reversible desiccation / rehydration cycle. Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, the dauer larvae exhibit a systemic chemical response upon preconditioning by dramatically reducing their phosphatidylcholine (PC) content. The C. elegans strain daf-2 was chosen for these studies, because it forms a constitutive dauer state under appropriate growth conditions. Using complementary approaches such as chemical analysis, time-resolved FTIR-spectroscopy, Langmuir-Blodgett monolayers, and fluorescence spectroscopy, it is shown that this chemical adaptation of the phospholipid (PL) composition has key consequences for their interaction with trehalose. Infrared-spectroscopic experiments were designed and automated to particularly address structural changes during fast hydration transients. Importantly, the coupling of headgroup hydration to acyl chain order at low humidity was found to be altered on the environmentally relevant time scale of seconds. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates during lyotropic transitions and sub- headgroup H-bond interactions as compared to PLs from non-preconditioned larvae. The effects are related to the intrinsically different hydration properties of PC and phosphatidylethanolamine (PE) headgroups, and lead to a larger hydration-dependent rearrangement of trehalose-mediated H-bond network in PLs from preconditioned larvae. This results in a lipid compressibility modulus of ∼0.5 mN/m and 1.2 mN/m for PLs derived from preconditioned and non-preconditioned larvae, respectively. The ensemble of these changes evidences a genetically controlled chemical tuning of the native lipid composition of a true anhydrobiote to functionally interact with a ubiquitous protective disaccharide. The biological relevance of this adaptation is the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose- containing cells during fast rehydration. Finally, the thermo-tropic lipid phase behavior was studied by temperature-dependent ATR-FTIR and fluorescence spectroscopy of LAURDAN-labeled PLs. The results show that the adaptation to drought, which is accomplished to a significant part by the reduction of the PC content, relies on reducing thermo-tropic and enhancing lyotropic phase transitions. The data are interpreted on a molecular level emphasizing the influence of trehalose on the lipid phase transition under biologically relevant conditions by a detailed analysis of the lipid C=O H-bond environment. The salient feature of the deduced model is a dynamic interaction of trehalose at the PL headgroup region. It is proposed here that the location of trehalose is changed from a more peripheral to a more sub-headgroup-associated position. This appears to be particularly pronounced in PLs from preconditioned worms. The sugar slides deeper into the inter-headgroup space during hydration and thereby supports a quick lateral expansion such that membranes can more readily adapt to the volume changes in the swelling biological material at reduced humidity. The data show that the nature of the headgroup is crucial for its interaction with trehalose and there is no general mechanism by which the sugar affects lipidic phase transitions. The intercalation into a phosphatidylethanolamine-rich membrane appears to be unique. In this case, neither the phase transition temperature nor its width is affected by the protective sugar, whereas strong effects on these parameters were observed with other model lipids. With respect to membrane preservation, desiccation tolerance may be largely dependent on reducing phosphatidylcholine and increasing the phsophatidylethanolamine content in order to optimize trehalose headgroup interactions. As a consequence, fast mechanical adaptation of cell membranes to hydration-induced strain can be realized.
3

Das Dauerstadium als Präadaptation

Chang, Zisong 08 January 2015 (has links)
Wir fanden konservierte molekulare Signaturen der Regulation durch Δ7-DA und Ascarosid bei Dauer- und infektiösen Larven. Danach wurde die hohe Konservierung durch unsere Analyse in Dauer- und Postdauer-Stadium zwischen den zwei nah verwandten freilebenden Arten C. elegans und C. briggsae identifiziert. Das heißt, dass die relative Veränderung auf mRNA- oder Protein- Ebene zwischen zwei Arten stark korreliert ist. Aber die relative Veränderung innerhalb derselben Art zeigt keine hochgradige Korrelation zwischen mRNA- und Protein-Ebene. Unsere Ergebnisse zeigen in C. elegans Dauerlarven die signifikante Reduzierung der RNA-Mengen in 20 Stoffwechselwegen. Im Gegensatz dazu speicherten Dauerlarven reichlich RNA-Mengen in GO Termen wie Ribosome und Aminoacyl-tRNA biosynthesis. Auf Protein-Ebene sind die Stoffwechselwege von Proteinsynthese und Proteinverarbeitung im endoplasmatischen Retikulum in Dauerlarven herunterreguliert und GO Terme wie Lysosome sind hochreguliert. Durch die Zeitreihenanalyse der Proteom-Remodellierung der molekularen Signaturen beim Austritt aus dem Dauer-Stadium fand wir, dass GO Terme wie metal ion binding signifikant herunterreguliert sind und der Proteinabbau hochreguliert ist. Unsere Ergebnisse vom pSILAC Experiment deuten an, dass die Proteine für Energieerzeugung und Chaperone/Proteinfaltung beim Daueraustritt schnell verbraucht sind und wieder hergestellt werden. Zum Schluss haben wir als Erste den popomR-Assay in C. elegans etabliert und ein Screening der vermeintlichen Proteinbindestellen auf poly-A-RNA durchgeführt, um in der Zukunft die konservierten Mechanismen der post-transkriptionellen Regulation durch RBPs im Dauer-Stadium zu analysieren. / We found the conservation of molecular signatures by regulating with Δ7-DA and Ascarosid in dauer larvae and infective larvae. Then by our comparative analysis, the high degree of conservation between two closely related free-living species C. elegans and C. briggsae was identified in dauer and post-dauer stages. This means that the relative changes are strongly correlated on the mRNA or the protein level between two species. But the relative changes in the same species don’t show any strong correlation between the mRNA and the protein levels. Our results showed a significantly reduced amount of RNA in 20 metabolic pathways in C. elegans dauer larvae. In contrast, dauer larvae stored a large amount of RNA in GO terms such as ribosome and aminoacyl-tRNA biosynthesis. On the protein level, the metabolic pathways of protein synthesis and protein processing in endoplasmic reticulum were downregulated in dauer larvae and the term of lysosome was up-regulated. Due to time course analysis for proteome remodeling of molecular signatures during exit process from dauer stage, we found that GO terms such as metal ion binding were significantly downregulated during dauer exit and at the same time the protein degradation was up-regulated. Our results of pSILAC experiment suggest that the proteins for energy generation and chaperone/protein folding are quickly spent and rebuilded during dauer exit. Finally, we were the first to establish the popomR assay in C. elegans and performed a screening of the putative protein binding sites on poly-A RNA to analyze the conserved mechanisms of post-transcriptional regulation by RBPs in dauer larvae in the future.

Page generated in 0.0482 seconds