• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semiparametric Modeling and Analysis for Time-varying Network Data

Sun, Jiajin January 2024 (has links)
Network data, capturing the connections or interactions among subjects of interest, are widely used across numerous scientific disciplines. Recent years have seen a significant increase in time-varying network data, which record not only the number of interactions but also the precise timestamps when these events occur. These data call for novel analytical developments that specifically leverage the event time information. In this thesis, we propose frameworks for analyzing longitudinal/panel network data and continuous time network data. For the analysis of longitudinal network data, we introduce a semiparametric latent space model. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter. Estimation is accomplished through a one-step update estimator and a suitably penalized maximum likelihood estimator. We derive oracle error bounds for both estimators and address identifiability concerns from a quotient manifold perspective. For analyzing continuous time network data, we introduce a Cox-type counting process latent space model. To accomodate the event history observations, each edge is modeled as a counting process, with intensity comprising three components: a time-dependent baseline function, an individual-level degree heterogeneity parameter, and a low-rank embedding for the interaction effects. A nuclear-norm penalized likelihood estimator is developed, and its oracle error bounds are established. Additionally, we discuss a several ongoing directions for this work.

Page generated in 0.0939 seconds