Spelling suggestions: "subject:"De broglie theory"" "subject:"De broglie's theory""
1 |
Constructing Numerical Methods For Solving The Guiding Equation In Bohmian MechanicsRobert, Nilsson January 2021 (has links)
The aim of this thesis was to simulate a part of a proposed experiment by Lev Vaidman by using Bohmian mechanics. To do this a numerical method for solving the Schrödinger equation and theguiding equation was created, with several ways of making the simulation more efficient.To make the simulation work more efficiently the Schrödinger equation was applied to only a small region of the whole setup. This region followed the wavefunction of significant values and could change size during the simulation. A beam splitter was constructed in the form of a thin potential barrier. The beam splitter was tested to verify that the reflected and transmitted angles agreed with expectations. A virtual detector was constructed and used for the calibration of the beam splitter to determine which potential resulted in dividing the wave packet into two wave packets of equal intensity. A fixed angle mirror was used for testing the reflection of a wave packet for the reflected angle and concluded that it agreed with the expectations for it. Testing a time dependent mirror for different frequencies and amplitudes was performed, with the result that the numerical method could be used to determine the particles’ trajectories. These results were used to construct a larger setup that was a small part of Vaidman’s proposed experiment. These setups were done in several version. All setups had one wave packet that went through one beam splitter and separated into two wave packets. These two wave packets reflected at two mirrors with different frequencies and then interfered with each other at either free space or at another beam splitter. The result of the simulation of these setups was that the particles’ trajectories could be calculated with the guiding equation. / Syftet med denna avhandling var att simulera en del av det föreslagna experimentet av Lev Vaidman med hjälp av Bohmsk mekanik. För att göra detta skapades en numerisk metod för att lösa Schrödingerekvationen och den ledande ekvationen, ”the guiding equation”, med flera sätt att effektivisera simuleringen. För att effektivisera simuleringen tillämpades Schrödingerekvationen på endast en liten region i hela uppställningen. Denna region följde vågfunktionen med betydande värden och kunde ändra storlek under simuleringen.En stråldelare konstruerades i form av en tunn potentialbarriär. Stråldelaren testades för att verifiera attde reflekterade och överförda vinklarna överensstämde med förväntningarna. En virtuell detektorkonstruerades och användes för kalibrering av stråldelaren för att bestämma vilken potential som resulterade i att vågpaketet delades in i två vågpaket med samma intensitet.En spegel med fast vinkel användes för att testa reflektionen av ett vågpaket för den reflekterade vinkeln och kom fram till att den överensstämde med förväntningarna för den. Att testa en tidsberoendespegel för olika frekvenser och amplituder utfördes med resultatet att den numeriska metoden kunde användas för att bestämma partiklarnas banor. Dessa resultat användes för att konstruera en större uppställning av ett experiment som var en liten delav Vaidmans föreslagna experiment. Dessa uppställningar gjordes i flera versioner. Alla uppställningar hade ett vågpaket som gick igenom en stråldelare och separerades i två vågpaket. Dessa två vågpaket reflekterades vid två speglar med olika frekvenser och interfererade sedan varandra antingen i en tom rymd eller vid en annan stråldelare. Resultatet av simuleringen av dessa inställningar var att partiklarnas banor kunde beräknas med ledande ekvation.
|
2 |
Varietats lorentzianes en la representació dels estats estacionaris dels àtoms hidrogenoides en la teoria de de Broglie - Bohm. Uns models heurísticsGómez Blanch, Guillem 10 November 2021 (has links)
[EN] This thesis aims to find out the applicability of Lorentzian geometry to represent the motion of the electron in hydrogen atoms according to the de Broglie-Bohm quantum theory (dBB).
It starts from the observation that electrons behave differently when they are part of atomic systems than when they are unbound. While these, when describing curvilinear trajectories emit energy, in electrons bounded to hydrogen atoms according to dBB describe circular stationary trajectories, without energy emission.
The above consideration suggests the hypothesis that electrons bounded to hydrogen atoms move in curved spaces, in which their trajectories are geodesics and therefore without acceleration or energy emission that would imply instability of matter.
We use Lorentzian geometry and some heuristic concepts of Einstein's Theory of General Relativity to describe this space-time. Furthermore, we establish an equivalence in the differential field by the tetravelocity and use Levi-Civita connectors, which unify metric and affine geodesics. We thus arrive at the formulation of a theorem and several corollaries that affect the components of the metrics that satisfy the previous hypothesis.
These metrics must also achieve the condition of being common to all possible trajectories of electrons of the same magnetic quantum state and two additional hypotheses: that the scalar curvature is positive (in order to avoid geodesic trajectories that escape to infinity) and that the energy component of the momentum-energy tensor corresponding to the Einstein field equations is positive, since although, in principle, this is inapplicable to quantum systems, modern modifications suggest that it is a plausible assumption.
With these conditions, we undertake the search for metrics that meet the aforementioned restrictions. We start with two simple metrics that meet the requirements of common space-time and the geodesic character of the trajectories, but the curvature and the energy component of the momentum-energy tensor are negative, so we go to use an exact solution of Einstein's field equations corresponding to a space-time created by particles turning around an axis (Lanczos-Van Stockum metric). We then obtain two metrics that correct the defects of the previous ones, but their geodesics do not exactly get the condition of circularity.
Finally, we perform a synthesis of both models and obtain two metrics that reasonably accomplish the requirements, with which we achieve the proposed goal of representing the motion of hydrogen electrons according to the dBB theory in a Lorentzian geometry.
The quantum potential of the dBB theory then appears as that which, together with the electromagnetic potential of the nucleus, forms a resulting force that makes rotate the electron around an axis passing through the nucleus. In the Lorentzian formulation proposed in this work, this function is exerted by the curvature of space-time. We also derive from our heuristic hypotheses that the wave-corpuscle duality in dBB theory, with our considerations, exerts a bidirectional interaction beyond the mere passive role that the particle plays in this theory: wave and particle remain at the same level interacting one on the other and vice versa, dialectally.
This work is complemented by a historical introduction, focusing particularly on the de Broglie's thesis and the Schrödinger's deduction of his famous equation of eigenvalues, emphasizing the use of a Riemannian metric. In addition, there are epistemological reflections on physical theories focusing on dialectics, and the free creation of concepts, as could be the case in some parts of our work. / [CAT] Aquesta tesi s'adreça a esbrinar l'aplicabilitat de la geometria lorentziana per a representar el moviment de l'electró en àtoms hidrogenoides segons la teoria quàntica de de Broglie-Bohm (dBB).
Parteix de la constatació que els electrons es comporten de manera diferent quan formen part de sistemes atòmics que quan són no lligats. Mentre que aquests, quan descriuen trajectòries curvilínies emeten energia, en els electrons lligats a àtoms hidrogenoides segons dBB descriuen trajectòries circulars de manera estacionària, sense emissió energètica.
L'anterior consideració ens suggereix la hipòtesi que els electrons lligats a àtoms hidrogenoides es mouen en espais corbats, en què llurs trajectòries en són geodèsiques i per tant sense acceleració ni emissió energètica que implicarien inestabilitat de la matèria.
Utilitzem la geometria lorentziana i alguns conceptes de la Teoria de la Relativitat General d'Einstein, amb caràcter heurístic, per a descriure aquest espai-temps. Establim una equivalència en l'àmbit diferencial mitjançant la tetravelocitat i utilitzem connectors de Levi-Civita, que unifiquen les geodèsiques mètriques i les afins. Arribem així a la formulació d'un teorema i diversos corol·laris que afecten els components de les mètriques que satisfan l'anterior hipòtesi.
Aquestes mètriques han de complir a més la condició de ser comuns a totes les possibles trajectòries dels electrons del mateix estat quàntic magnètic i de dues hipòtesis addicionals: que la curvatura escalar siga positiva (per tal d'evitar trajectòries geodèsiques que escapen a l'infinit) i que siga positiu el component energètic del tensor d'impulsió-energia corresponent a l'equació de camp d'Einstein, puix encara que aquesta és inaplicable als sistemes quàntics, modernes modificacions fan pensar que és una suposició plausible.
Amb aquests condicionants emprenem la recerca de mètriques que complisquen les restriccions adés esmentades. Comencem amb dues mètriques senzilles que compleixen el requisit de l'espai-temps comú i del caràcter geodèsic de les trajectòries, però la curvatura i el component energètic del tensor d'impulsió-energia hi són negatius, per la qual cosa acudim a utilitzar una solució exacta de les equacions de camp d'Einstein corresponents a un espai-temps creat per partícules que giren al voltant d'un eix (mètrica de Lanczos-Van Stockum). Aleshores obtenim dues mètriques que corregeixen els defectes de les anteriors, però llurs geodèsiques no compleixen exactament la condició de circularitat.
Finalment realitzem una síntesi d'ambdós models i obtenim dues mètriques que compleixen raonablement els requisits, amb les quals atenyem l'objectiu proposat de representar el moviment dels electrons hidrogenoides segons la teoria dBB en una geometria lorentziana.
El potencial quàntic de la teoria dBB, apareix llavors com a aquell que, junt a l'electromagnètic del nucli, configura una força resultant que fa girar l'electró al voltant d'un eix que passa pel nucli. En la formulació lorentziana proposada en aquest treball, aquesta funció és exercida per la curvatura de l'espai-temps. També derivem de les nostres hipòtesis heurístiques que la dualitat ona-corpuscle en la teoria dBB amb les nostres consideracions exerceix una interacció bidireccional més enllà del mer paper passiu que té la partícula en aquesta teoria: ona i partícula resten al mateix nivell interactuant una sobre l'altra i vici-versa de manera dialèctica. / [ES] Esta tesis se dirige a investigar la aplicabilidad de la geometría lorentziana para representar el movimiento del electrón en átomos hidrogenoides según la teoría cuántica de de Broglie-Bohm (dBB). Parte de la constatación de que los electrones se comportan de manera diferente cuando forman parte de sistemas atómicos o cuando son no ligados. Mientras que estos, cuando describen trayectorias curvilíneas emiten energía, en los electrones ligados en átomos hidrogenoides según dBB describen trayectorias circulares de manera estacionaria, sin emisión energética. La anterior consideración nos sugiere la hipótesis de que los electrones ligados a átomos hidrogenoides se mueven en espacios curvos, donde sus trayectorias son geodésicas y por lo tanto sin aceleración ni emisión energética que implicarían inestabilidad de la materia. Utilizamos la geometría lorentziana y algunos conceptos de la Teoría de la Relatividad General de Einstein con carácter heurístico, para describir este espacio-tiempo. Establecemos una equivalencia a nivel diferencial mediante la tetravelocidad y utilizamos conectores de Levi-Civita, que unifican las geodésicas métricas y las afines. Llegamos así a la formulación de un teorema y algunos corolarios que afectan a los componentes de las métricas que satisfacen la anterior hipótesis. Estas métricas han de cumplir además la condición de ser comunes a todas las posibles trayectorias de los electrones del mismo estado cuántico magnético y de dos hipótesis adicionales: que la curvatura escalar sea positiva (para evitar trayectorias geodésicas que escapen al infinito y que sea positivo el componente energético del tensor de impulsión- energía correspondiente a la ecuación de campo de Einstein, porque aunque esta es inaplicable a los sistemas cuánticos, modernas modificaciones sugieren que es una suposición plausible. Con estos condicionantes emprendemos la búsqueda de métricas que cumplan las restricciones mencionadas. Empezamos con dos métricas sencillas que cumplen el requisito del espacio-tiempo común y el carácter geodésico de las trayectorias, pero la curvatura y el componente energético del tensor de impulsión-energía son negativos, por lo que acudimos a utilizar una solución exacta de las ecuaciones de campo de Einstein correspondientes a un espacio-tiempo creado por partículas que giran alrededor de un eje (métrica de Lanczos-Van Stockum). Obtenemos así dos métricas que corrigen los defectos de las anteriores, pero sus geodésicas no cumplen exactamente la condición de circularidad. Finalmente realizamos una síntesis de ambos modelos y obtenemos dos métricas que cumplen razonablemente los requisitos, con las que alcanzamos el objetivo propuesto de representar el movimiento de los electrones hidrogenoides según la teoría dBB en una geometría lorentziana. El potencial cuántico de la teoría dBB aparece entonces como el que, junto al electromagnético del núcleo, configura una fuerza resultante que hace girar al electrón alrededor de un eje que pasa por el núcleo. En la formulación lorentziana propuesta en este trabajo, esta función es ejercida por la curvatura del espacio-tiempo. También derivamos de nuestras hipótesis heurísticas que la dualidad onda-partícula en la teoría dBB con nuestras consideraciones ejerce una interacción bidireccional más allá del mero papel pasivo que tiene la partícula en esta teoría: onda y partícula quedan al mismo nivel interaccionando una sobre la otra y viceversa de manera dialéctica. El trabajo se complementa con una introducción histórica, incidiendo particularmente en la tesis de de Broglie y en la deducción de Schrödinger de su famosa ecuación de valores propios, destacando el uso de una métrica riemanniana. Además, se hacen unas reflexiones epistemológicas sobre las teorías físicas incidiendo en la dialéctica y la libre creación de conceptos, como podría ser el caso. / Gómez Blanch, G. (2021). Varietats lorentzianes en la representació dels estats estacionaris dels àtoms hidrogenoides en la teoria de de Broglie - Bohm. Uns models heurístics [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176757
|
Page generated in 0.0635 seconds