• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Necrotizing Crescentic Glomerulonephritis Complicating Bivalvular Bacterial Endocarditis

Hashmi, Arsalan T., Khalid, Muhammad, Waseem, Husnain, Batool, Asiya, Patel, Jignesh, Kamholz, Stephan 23 April 2018 (has links)
In the setting of an increasing incidence of endocarditis in the United States, we report a patient with necrotizing crescentic glomerulonephritis (GN) associated with native valve bacterial endocarditis due to Streptococcus parasanguinis. He was started on appropriate antibiotic treatment and subsequent blood cultures showed no growth. However, due to continuing decline in kidney function, immunosuppressive therapy was started. Despite immunosuppressive therapy and antibiotics, renal function did not improve and chronic hemodialysis was required. Due to rarity of condition, there are no definite treatment guidelines available. Antibiotics, steroids, immunosuppressive agents can be of help in most cases. Further research in this regard may help with early diagnosis and better treatment modalities.
2

Aeolian dune-field boundary conditions and dune interactions related to dune-field pattern formation on Earth and Mars

Ewing, Ryan Cotter 02 June 2010 (has links)
Aeolian dune fields form some of the most striking patterns on Earth and Mars. These patterns reflect the internal dune dynamics of self-organization within boundary conditions, which are the unique set of environmental variables within which each dune field evolves. Dune-field pattern self-organization occurs because of interactions between the dunes themselves and the rich diversity of dune-field patterns arises because boundary conditions alter the type and frequency of dune interactions. These hypotheses are explored in three parts. First, source-area geometry and areal limits are two newly recognized boundary conditions. Measurements of crest length and spacing from satellite images of dune patterns with point and line source-area geometries show an increase in crest length and spacing over distance, whereas crest length and spacing in plane-sourced patterns emerge equally across the dune field. The areal limit boundary condition is the size and shape of the dune field itself. Empirical measurements from ten dune fields ranging over four orders of magnitude in area show that spacing increases and defect density decreases as the area of the dune field increases. A simple analytical model indicates that dune fields that are five times longer in the dune migration direction can achieve the greatest spacing for a given area. Second, time-series aerial photographs and airborne LiDAR show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Interaction type, classified as constructive, regenerative or neutral in terms of pattern development, changes spatially with the pattern because of the imposition of the line-source area and sediment availability boundary conditions. Upwind dominance by constructive interactions at the field line-source yields to neutral and regenerative interactions in the sediment availability-limited field center. Third, the dune-field pattern in the Olympia Undae Dune Field on Mars is comprised of two generations of dunes. This scenario of pattern reformation with a new wind regime shows that the emergence of the younger pattern is controlled by the boundary condition of the antecedent dune topography imposed upon the interaction between the younger and older patterns. / text
3

Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis

Labes, Robert, Dong, Lei, Mrowka, Ralf, Bachmann, Sebastian, Vietinghoff, Sibylle von, Paliege, Alexander 30 May 2024 (has links)
Non-resolving inflammation plays a critical role during the transition from renal injury towards end-stage renal disease. The glucocorticoid-inducible protein annexin A1 has been shown to function as key regulator in the resolution phase of inflammation, but its role in immune-mediated crescentic glomerulonephritis has not been studied so far. Methods: Acute crescentic glomerulonephritis was induced in annexin A1-deficient and wildtype mice using a sheep serum against rat glomerular basement membrane constituents. Animals were sacrificed at d5 and d10 after nephritis induction. Renal leukocyte abundance was studied by immunofluorescence and flow cytometry. Alterations in gene expression were determined by RNA-Seq and gene ontology analysis. Renal levels of eicosanoids and related lipid products were measured using lipid mass spectrometry. Results: Histological analysis revealed an increased number of sclerotic glomeruli and aggravated tubulointerstitial damage in the kidneys of annexin A1-deficient mice compared to the wildtype controls. Flow cytometry analysis confirmed an increased number of CD45+ leukocytes and neutrophil granulocytes in the absence of annexin A1. Lipid mass spectrometry showed elevated levels of prostaglandins PGE2 and PGD2 and reduced levels of antiinflammatory epoxydocosapentaenoic acid regioisomers. RNA-Seq with subsequent gene ontology analysis revealed induction of gene products related to leukocyte activation and chemotaxis as well as regulation of cytokine production and secretion. Conclusion: Intrinsic annexin A1 reduces proinflammatory signals and infiltration of neutrophil granulocytes and thereby protects the kidney during crescentic glomerulonephritis. The annexin A1 signaling cascade may therefore provide novel targets for the treatment of inflammatory kidney disease.

Page generated in 0.0589 seconds