• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow visualization of time-varying structural characteristics of Dean vortices in a curved channel

Bella, David Wayne 12 1900 (has links)
Approved for public release; distribution is unlimited / The time varying development and structure of Dean vortices were studies using flow visualization. Observations were made over a range of Dean numbers from 40 to 200 using a transparent channel with mild curvature, 40:1 aspect ratio, and an inner to outer radius ratio of 0.979. Seven flow visualization techniques were tried but only one, a wood burning smoke generator, produced usable results. Different vortex characteristics were observed and documented in sequences of photographs space one quarter of a second apart at locations ranging from 85 to 135 degrees from the start of curvature. Evidence is presented that supports the twisting/rocking nature of the flow. / http://archive.org/details/flowvisualizatio00bell / Lieutenant, United States Navy
2

Turbulent Simulations of Feline Aortic Flow under Hypertrophic Cardiomyopathy Heart Condition

Borse, Manish Rajendra 12 August 2016 (has links) (PDF)
A computational fluid dynamics (CFD) model is developed for pulsatile flows and particle transport to evaluate the possible thrombus trajectory in the feline aorta for Hypertrophic Cardiomyopathy (HCM) heart conditions. An iterative target mass flow rate boundary condition is developed, and turbulent simulations with Lagrangian particle transport model are performed using up to 11M grids. The model is validated for human abdominal aorta flow, for which the results agree within 11.6% of the experimental data. The model is applied for flow predictions in a generalized feline aorta for healthy and HCM heart conditions. Results show that in the HCM case, the flow through the iliac arteries decreases by 50%, due to the large recirculation regions in the abdominal aorta compared to the healthy heart case. The flow recirculation also result in stronger vortices with slower decay, causing entrapment of particles in the thoracic aorta and trifurcation regions.
3

Numerical Investigation of Thermal Performance for Rotating High Aspect Ratio Serpentine Passages

Haugen, Christina G. M. January 2014 (has links)
No description available.

Page generated in 0.0686 seconds