• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In vitro Fibrillogenese von Kollagen Typ I in Gegenwart von Polymeren unter gerbereichemischem Aspekt

Naumburger, Doreen 10 October 2007 (has links) (PDF)
Gerbstoffe stabilisieren die Kollagenmatrix der Haut, in dem sie auf unterschiedlichste Art und Weise chemische Quervernetzungen herstellen. Es bleibt jedoch bis heute weitgehend unbeantwortet, auf welcher hierarchischen Ebene der Kollagenstruktur diese Wechselwirkung stattfindet und wie stringent eine solche Bindung mindestens sein muss, um einer Substanz den Charakter eines Gerbstoffes zu verleihen. Im Rahmen der vorliegenden Arbeit wurde ein Modellsystem entwickelt, das es gestattet, Aussagen darüber zu treffen, auf welcher Strukturebene des Kollagens diese Wechselwirkung stattfindet. Dazu wurde auf ein „bottom-up“ Verfahren zurückgegriffen, bei dem der Gerbstoff nicht auf Haut aufgebracht, sondern die Fibrillen in Anwesenheit von verschiedenen Wirkstoffen neu gebildet werden. Für die Untersuchungen wurden Vertreter aus der Substanzklasse der Polymere ausgewählt. Es kam Polyacrylsäure zum Einsatz, die als Fettungsmittel genutzt wird, und Polymethacrylsäure, welche in der Produktion als Nachgerbstoff verwendet wird. Vertreter ungeladener Polymere waren Ethylen-, Diethylen- und Polyethylenglycol, wobei hier die unterschiedlichen Molekülgrößen im Vergleich von Bedeutung waren. Des Weiteren wurde Glutaraldehyd als Vertreter eines gerbenden kovalenten Vernetzers untersucht. Kollagen Typ I Fibrillen wurden in vitro ausgehend von der Monomerform assembliert, und mit UV/Vis-Spektroskopie wurde verfolgt, ob und gegebenenfalls wie die Polymere die Kinetik der in vitro Fibrillogenese verändern. Dabei wurde beobachtet, dass bis auf Polyethylenglycol alle eingesetzten Substanzen auf unterschiedlichste Art schon auf der kleinsten Kollageneinheit - der Tripelhelix wirken. Diese Daten wurden mittels eines mathematischen Modells ausgewertet, das es ermöglicht, die Fibrillogenese in Teilreaktionen zu gliedern und die geschwindigkeitsbestimmenden Schritte zu evaluieren. So konnte ermittelt werden, dass trotz ähnlich erscheinender Fibrillenbildungskinetiken große Unterschiede zwischen Polyacrylsäure und Polymethacrylsäure bezüglich ihres Hauptwirkortes in den hierarchischen Strukturebenen des Kollagens auftreten. Während der Nachgerbstoff Polymethacrylsäure schon in geringen Konzentrationen in großem Maße in alle Teilprozesse der Fibrillogenese eingreift, zeigt Polyacrylsäure die größten Effekte auf mikrofibrillärer Ebene - einer Fibrillensubstruktur. Dieser Einfluss spiegelt sich in Morphologieänderungen in Form von so genannten gesplitteten Fibrillen wider, welche mittels atomkraftmikroskopischen Untersuchungen beobachtet werden konnten. Zusätzlich scheint Polymethacrylsäure ab einer kritischen Konzentration die Fibrillenbildung über einen alternativen Weg ablaufen zu lassen, was sich in der morphologischen Betrachtung in Form von langen, dünnen Fibrillen äußert, welche nicht mehr in der Lage sind zu höheren Strukturen zu verdrillen. Um zusätzlich die Art der Bindung näher zu charakterisieren, wurde ein weiteres Verfahren entwickelt, welches die Umkehrreaktion der in vitro Fibrillogenese beschreibt. Diese Methode der so genannten Deassemblierung ermöglicht eine Unterscheidung zwischen elektrostatischen Wechselwirkungen und kovalenten Bindungen zwischen Kollagen und Polymer, indem die Fibrille wieder in ihre nativen Monomeruntereinheiten zerlegt und gleichzeitig studiert wird, ob sich die Polymere vom Kollagen durch Ladungseintrag lösen lassen. Polyethylenglycol und seine niedermolekularen Äquivalente lassen sich in saurem Milieu problemlos von Kollagen abwaschen, was für sehr schwache Wechselwirkungen spricht. Kovalente Bindungen, wie etwa zwischen Kollagen und Glutaraldehyd lassen sich mit dieser Methode nicht lösen. Polyacrylsäure und Polymethacrylsäure lassen sich nur zu einem geringen Anteil von Kollagen lösen, was auf unterschiedlich affine Bindungsplätze der Polymere an Kollagen deutet. Beeindruckender Weise ist es für ausschließlich mit Polymethacrylsäure vernetztes Kollagen nicht möglich, dieses wieder in seine Untereinheiten zu zerlegen. Polymethacrylsäure ist demnach in der Lage die Kollagenmatrix auch ohne die Ausbildung kovalenter Bindungen ausreichend zu stabilisieren. Damit können die eingesetzten und entwickelten Verfahren als Screeningmethoden gesehen werden, welche schon vor dem eigentlichen Gerbversuch weit reichende Auskünfte über ein mögliches Gerbverhalten der zu Untersuchung eingesetzten Substanz liefern. Die vorliegenden Ergebnisse erlauben Aussagen über den molekularen Charakter der Kollagen - Polymer Wechselwirkung und stellen somit einen Beitrag zum Verständnis der Gerbung dar.
2

Vergleichende Studie zur In-vitro- und In-vivo-Gerbung mit Chrom und organischen Gerbstoffen

Haufe, Nora 18 May 2012 (has links) (PDF)
Das Strukturprotein Kollagen ist der Hautbestandteil von Haut und somit geeignet, die Gerbung auf molekularer Ebene zu studieren. Das schon sehr alte Handwerk des Gerbens hat das Ziel die Kollagenmatrix so zu stabilisieren, dass diese stabil und flexibel bleibt, auch wenn die Feuchtigkeit entweicht und das Leder hohen Temperaturen ausgesetzt ist. Als Größe zur Charakterisierung der Gerbung dient die Schrumpfungstemperatur. Erkenntnisgewinn auf molekularer Ebene ist Ziel der Untersuchungen, da die Mechanismen der Gerbung bis heute nicht vollständig verstanden sind und grundlegend für die Synthese neuer Gerbstoffe sind. Die Kinetik der Assemblierung von Kollagenmonomeren zu Fibrillen wird spektroskopisch studiert. Der Einfluss von Additiven kann somit auf molekularer Ebene evaluiert werden. Ergänzend wird die Morphologie der Assemblate betrachtet. Studien der anschließenden Deassemblierung liefern Informationen über die Festigkeit der Kollagenmatrix. Für die Korrelation der Modellreaktion mit dem Realsystem der Gerbung werden Schrumpfungstemperaturen gemessen und Strukturuntersuchungen durchgeführt. Für diese Untersuchungen wird Hautpulver eingesetzt, um homogene Ergebnisse zu garantieren. Drei praxisrelevante Stoffgruppen, nämlich Chrom, Aldehyde und Polyphenole, wurden untersucht. Der Hauptgerbstoff Chrom zeigt bei den Assemblierungsuntersuchungen nur geringe Auswirkungen auf das Modellsystem. Die Deassemblierung hingegen lässt die gute Gerbeigenschaft klar erkennen. Zur Erklärung des Streifenmusters, das bei chromgegerbten und somit positiv gestainten Fibrillen im TEM zu erkennen ist, wurde ein theoretischer Ansatz unternommen. Glutaraldehyd und Formaldehyd werden zur Gerbung benutzt. Aldehyde vernetzen die Kollagenmatrix kovalent. Die Untersuchung der homologen Reihe der Dialdehyde wurde hinsichtlich einer Tendenz oder einem Optimum in der Moleküllänge untersucht. Die Aldehyde vernetzen die Monomere, sodass in den Assemblierungskinetiken nur verminderte Plateauhöhen erreicht werden. Die Minimierung der Plateauhöhe kann nicht quantitativ mit der Gerbwirkung gleichgesetzt werden. Mit Aldehydzusatz assemblierte Fibrillen haben ein unverändertes Erscheinungsbild. Die Schlussfolgerung ist, dass die Fibrillenstruktur nicht verändert, aber dezimiert ist. Da nur Formaldehyd, Glyoxal und Glutaraldehyd als reine wässrige Lösung vorlagen mussten die andern drei Dialdehyde hergestellt werden. Dabei sind zusätzliche Substanzen in den Lösungen enthalten, die die Ergebnisse stören. Einen Trend, der mit der Moleküllänge einhergeht, konnte nicht beobachtet werden. Dies ist mit der flexiblen Ordnung der Moleküle in Lösung - im Gegensatz zur Kollagenmatrix in der Haut - zu begründen. Eine kombinierte Wirkung von Chrom und Aldehyd konnte bei der Assemblierung nachvollzogen werden und belegt die Annahmen zur Gerbung aus der Literatur, dass die Gerbung über die sauren Seitenketten bzw. über die Aminogruppen geschieht. Die untersuchten Polyphenole haben keine gerbende Wirkung, sind dem Naturgerbstoff Tannin chemisch aber sehr ähnlich, sodass der Unterschied in der räumlichen Struktur liegen muss. Die Kondensate werden bezüglich ihrer Kettenlänge und der Anzahl ihrer funktionellen Gruppen analysiert. Die Störung der Assemblierung ist bei Zusatz von Phenolkondensaten ist stärker als bei den anderen Testsubstanzen, was eine starke Interaktion zeigt. Messungen der Schrumpfungstemperaturen an Hautpulver ergaben, dass die Syntane keinen waschstabilen Effekt haben. Die Anlagerung an das Kollagen ist folglich zu schwach. Parallele TEM-Analysen ergaben, dass der pH-Wert bei der Vernetzung einen Einfluss auf die Intensität der Streifung hat. Mit zunehmendem pH-Wert erscheint die Streifung intensiver, bis hin zu einer erkennbaren Substreifung. Bei verschieden hohen Schrumpfungstemperaturen zeichnen sind zwei Aussagen ab. Zum einen ist mikroskopisch klar zu erkennen, wenn die Probe denaturiert ist, also über ihrer Schrumpfungstemperatur gekommen ist. Zum anderen ist ein leicht verminderter D-Abstand mit zunehmenden Schrumpfungstemperaturen zu verzeichnen. Besitzen Additive eine gerbende Wirkung, so zeigt sich dies nicht analog im Assemblierungsmodell oder in der Morphologie der Fibrillen. Eindeutige Rückschlüsse sind nicht zu ziehen. Bei der Deassemblierung äußert sich die Gerbwirkung aber immer durch eine verminderte Löslichkeit der Matrix. Daher ist dies eine wertvolle Technik für die Grundlagenforschung in der Gerbung.
3

In vitro Fibrillogenese von Kollagen Typ I in Gegenwart von Polymeren unter gerbereichemischem Aspekt

Naumburger, Doreen 24 August 2007 (has links)
Gerbstoffe stabilisieren die Kollagenmatrix der Haut, in dem sie auf unterschiedlichste Art und Weise chemische Quervernetzungen herstellen. Es bleibt jedoch bis heute weitgehend unbeantwortet, auf welcher hierarchischen Ebene der Kollagenstruktur diese Wechselwirkung stattfindet und wie stringent eine solche Bindung mindestens sein muss, um einer Substanz den Charakter eines Gerbstoffes zu verleihen. Im Rahmen der vorliegenden Arbeit wurde ein Modellsystem entwickelt, das es gestattet, Aussagen darüber zu treffen, auf welcher Strukturebene des Kollagens diese Wechselwirkung stattfindet. Dazu wurde auf ein „bottom-up“ Verfahren zurückgegriffen, bei dem der Gerbstoff nicht auf Haut aufgebracht, sondern die Fibrillen in Anwesenheit von verschiedenen Wirkstoffen neu gebildet werden. Für die Untersuchungen wurden Vertreter aus der Substanzklasse der Polymere ausgewählt. Es kam Polyacrylsäure zum Einsatz, die als Fettungsmittel genutzt wird, und Polymethacrylsäure, welche in der Produktion als Nachgerbstoff verwendet wird. Vertreter ungeladener Polymere waren Ethylen-, Diethylen- und Polyethylenglycol, wobei hier die unterschiedlichen Molekülgrößen im Vergleich von Bedeutung waren. Des Weiteren wurde Glutaraldehyd als Vertreter eines gerbenden kovalenten Vernetzers untersucht. Kollagen Typ I Fibrillen wurden in vitro ausgehend von der Monomerform assembliert, und mit UV/Vis-Spektroskopie wurde verfolgt, ob und gegebenenfalls wie die Polymere die Kinetik der in vitro Fibrillogenese verändern. Dabei wurde beobachtet, dass bis auf Polyethylenglycol alle eingesetzten Substanzen auf unterschiedlichste Art schon auf der kleinsten Kollageneinheit - der Tripelhelix wirken. Diese Daten wurden mittels eines mathematischen Modells ausgewertet, das es ermöglicht, die Fibrillogenese in Teilreaktionen zu gliedern und die geschwindigkeitsbestimmenden Schritte zu evaluieren. So konnte ermittelt werden, dass trotz ähnlich erscheinender Fibrillenbildungskinetiken große Unterschiede zwischen Polyacrylsäure und Polymethacrylsäure bezüglich ihres Hauptwirkortes in den hierarchischen Strukturebenen des Kollagens auftreten. Während der Nachgerbstoff Polymethacrylsäure schon in geringen Konzentrationen in großem Maße in alle Teilprozesse der Fibrillogenese eingreift, zeigt Polyacrylsäure die größten Effekte auf mikrofibrillärer Ebene - einer Fibrillensubstruktur. Dieser Einfluss spiegelt sich in Morphologieänderungen in Form von so genannten gesplitteten Fibrillen wider, welche mittels atomkraftmikroskopischen Untersuchungen beobachtet werden konnten. Zusätzlich scheint Polymethacrylsäure ab einer kritischen Konzentration die Fibrillenbildung über einen alternativen Weg ablaufen zu lassen, was sich in der morphologischen Betrachtung in Form von langen, dünnen Fibrillen äußert, welche nicht mehr in der Lage sind zu höheren Strukturen zu verdrillen. Um zusätzlich die Art der Bindung näher zu charakterisieren, wurde ein weiteres Verfahren entwickelt, welches die Umkehrreaktion der in vitro Fibrillogenese beschreibt. Diese Methode der so genannten Deassemblierung ermöglicht eine Unterscheidung zwischen elektrostatischen Wechselwirkungen und kovalenten Bindungen zwischen Kollagen und Polymer, indem die Fibrille wieder in ihre nativen Monomeruntereinheiten zerlegt und gleichzeitig studiert wird, ob sich die Polymere vom Kollagen durch Ladungseintrag lösen lassen. Polyethylenglycol und seine niedermolekularen Äquivalente lassen sich in saurem Milieu problemlos von Kollagen abwaschen, was für sehr schwache Wechselwirkungen spricht. Kovalente Bindungen, wie etwa zwischen Kollagen und Glutaraldehyd lassen sich mit dieser Methode nicht lösen. Polyacrylsäure und Polymethacrylsäure lassen sich nur zu einem geringen Anteil von Kollagen lösen, was auf unterschiedlich affine Bindungsplätze der Polymere an Kollagen deutet. Beeindruckender Weise ist es für ausschließlich mit Polymethacrylsäure vernetztes Kollagen nicht möglich, dieses wieder in seine Untereinheiten zu zerlegen. Polymethacrylsäure ist demnach in der Lage die Kollagenmatrix auch ohne die Ausbildung kovalenter Bindungen ausreichend zu stabilisieren. Damit können die eingesetzten und entwickelten Verfahren als Screeningmethoden gesehen werden, welche schon vor dem eigentlichen Gerbversuch weit reichende Auskünfte über ein mögliches Gerbverhalten der zu Untersuchung eingesetzten Substanz liefern. Die vorliegenden Ergebnisse erlauben Aussagen über den molekularen Charakter der Kollagen - Polymer Wechselwirkung und stellen somit einen Beitrag zum Verständnis der Gerbung dar.
4

Vergleichende Studie zur In-vitro- und In-vivo-Gerbung mit Chrom und organischen Gerbstoffen: Vergleichende Studie zur In-vitro- und In-vivo-Gerbung mit Chrom und organischen Gerbstoffen

Haufe, Nora 26 April 2012 (has links)
Das Strukturprotein Kollagen ist der Hautbestandteil von Haut und somit geeignet, die Gerbung auf molekularer Ebene zu studieren. Das schon sehr alte Handwerk des Gerbens hat das Ziel die Kollagenmatrix so zu stabilisieren, dass diese stabil und flexibel bleibt, auch wenn die Feuchtigkeit entweicht und das Leder hohen Temperaturen ausgesetzt ist. Als Größe zur Charakterisierung der Gerbung dient die Schrumpfungstemperatur. Erkenntnisgewinn auf molekularer Ebene ist Ziel der Untersuchungen, da die Mechanismen der Gerbung bis heute nicht vollständig verstanden sind und grundlegend für die Synthese neuer Gerbstoffe sind. Die Kinetik der Assemblierung von Kollagenmonomeren zu Fibrillen wird spektroskopisch studiert. Der Einfluss von Additiven kann somit auf molekularer Ebene evaluiert werden. Ergänzend wird die Morphologie der Assemblate betrachtet. Studien der anschließenden Deassemblierung liefern Informationen über die Festigkeit der Kollagenmatrix. Für die Korrelation der Modellreaktion mit dem Realsystem der Gerbung werden Schrumpfungstemperaturen gemessen und Strukturuntersuchungen durchgeführt. Für diese Untersuchungen wird Hautpulver eingesetzt, um homogene Ergebnisse zu garantieren. Drei praxisrelevante Stoffgruppen, nämlich Chrom, Aldehyde und Polyphenole, wurden untersucht. Der Hauptgerbstoff Chrom zeigt bei den Assemblierungsuntersuchungen nur geringe Auswirkungen auf das Modellsystem. Die Deassemblierung hingegen lässt die gute Gerbeigenschaft klar erkennen. Zur Erklärung des Streifenmusters, das bei chromgegerbten und somit positiv gestainten Fibrillen im TEM zu erkennen ist, wurde ein theoretischer Ansatz unternommen. Glutaraldehyd und Formaldehyd werden zur Gerbung benutzt. Aldehyde vernetzen die Kollagenmatrix kovalent. Die Untersuchung der homologen Reihe der Dialdehyde wurde hinsichtlich einer Tendenz oder einem Optimum in der Moleküllänge untersucht. Die Aldehyde vernetzen die Monomere, sodass in den Assemblierungskinetiken nur verminderte Plateauhöhen erreicht werden. Die Minimierung der Plateauhöhe kann nicht quantitativ mit der Gerbwirkung gleichgesetzt werden. Mit Aldehydzusatz assemblierte Fibrillen haben ein unverändertes Erscheinungsbild. Die Schlussfolgerung ist, dass die Fibrillenstruktur nicht verändert, aber dezimiert ist. Da nur Formaldehyd, Glyoxal und Glutaraldehyd als reine wässrige Lösung vorlagen mussten die andern drei Dialdehyde hergestellt werden. Dabei sind zusätzliche Substanzen in den Lösungen enthalten, die die Ergebnisse stören. Einen Trend, der mit der Moleküllänge einhergeht, konnte nicht beobachtet werden. Dies ist mit der flexiblen Ordnung der Moleküle in Lösung - im Gegensatz zur Kollagenmatrix in der Haut - zu begründen. Eine kombinierte Wirkung von Chrom und Aldehyd konnte bei der Assemblierung nachvollzogen werden und belegt die Annahmen zur Gerbung aus der Literatur, dass die Gerbung über die sauren Seitenketten bzw. über die Aminogruppen geschieht. Die untersuchten Polyphenole haben keine gerbende Wirkung, sind dem Naturgerbstoff Tannin chemisch aber sehr ähnlich, sodass der Unterschied in der räumlichen Struktur liegen muss. Die Kondensate werden bezüglich ihrer Kettenlänge und der Anzahl ihrer funktionellen Gruppen analysiert. Die Störung der Assemblierung ist bei Zusatz von Phenolkondensaten ist stärker als bei den anderen Testsubstanzen, was eine starke Interaktion zeigt. Messungen der Schrumpfungstemperaturen an Hautpulver ergaben, dass die Syntane keinen waschstabilen Effekt haben. Die Anlagerung an das Kollagen ist folglich zu schwach. Parallele TEM-Analysen ergaben, dass der pH-Wert bei der Vernetzung einen Einfluss auf die Intensität der Streifung hat. Mit zunehmendem pH-Wert erscheint die Streifung intensiver, bis hin zu einer erkennbaren Substreifung. Bei verschieden hohen Schrumpfungstemperaturen zeichnen sind zwei Aussagen ab. Zum einen ist mikroskopisch klar zu erkennen, wenn die Probe denaturiert ist, also über ihrer Schrumpfungstemperatur gekommen ist. Zum anderen ist ein leicht verminderter D-Abstand mit zunehmenden Schrumpfungstemperaturen zu verzeichnen. Besitzen Additive eine gerbende Wirkung, so zeigt sich dies nicht analog im Assemblierungsmodell oder in der Morphologie der Fibrillen. Eindeutige Rückschlüsse sind nicht zu ziehen. Bei der Deassemblierung äußert sich die Gerbwirkung aber immer durch eine verminderte Löslichkeit der Matrix. Daher ist dies eine wertvolle Technik für die Grundlagenforschung in der Gerbung.

Page generated in 0.055 seconds