• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Anatomy of oligocene-miocene debris flows and slumps from demerara rise implications for margin destruction /

Ingram, Wesley. Wise, Sherwood W. January 2005 (has links)
Thesis (M.S.)--Florida State University, 2005. / Advisor: Sherwood W. Wise, Jr., Florida State University, College of Arts and Sciences, Dept. of Geological Sciences. Title and description from dissertation home page (viewed Jan. 27, 2006). Document formatted into pages; contains ix, 93 pages. Includes bibliographical references.
12

Delineation of mass movement-prone areas by Landsat 7 and digital image processing /

Howland, Shiloh Marie, January 2003 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geology, 2003. / Includes bibliographical references (p. 38-40).
13

Debris flows in the southern Coast Mountains, British Columbia : dynamic behaviour and physical properties

Jordan, Robert Peter 05 1900 (has links)
Debris flows in the southern Coast Mountains exhibit different dynamic and sedimentologic characteristics, depending on the lithology of their source areas. Fine-textured debris flows originating in the Quaternary volcanic complexes are much more mobile than those originating in the coarse-textured plutonic rocks which form most of this mountain range. Mobility can be described as the velocity of flow, the distance of travel of debris flows, and the slope required to sustain flow. The objectives of this study are to examine the effect of different sediment composition on the mobility of debris flows, and to determine which rheologic models are most applicable for modeling debris flows in these geologic environments. About 25 debris flow events in or adjacent to the southern Coast Mountains were examined, ranging in volume from 10² m³ to over 10⁷ m³. Field methods included sampling of grain-size distribution, measurement of the deposit and channel dimensions, and observation of the stratigraphy of debris flow fans. Shear strength, permeability, and consolidation tests were performed on samples of reconstituted debris, representative of typical fine-textured and coarsetextured debris flows. These samples were also used to model debris flows in a flume. The coarse-textured, plutonic-source, debris flows typically had a distinct, inverselygraded, clast-supported, surface layer of cobbles and boulders. Their deposits tended to be irregular in thickness, with lobes and levees of coarse material. The fine-textured, volcanicsource, debris flows had no such surface layer, and their deposits were generally uniform in thickness and surface morphology. These observations, and corroborating evidence from the flume results, suggest that fine-textured debris flows behave according to the Bingham flow model, while coarse-textured debris flows can be better described by a granular, or dilatant, flow model. A clay content of about 4% in the matrix (sub-4 mm material) is a useful measure to distinguish the two populations. Several debris flow events of intermediate behaviour and sediment composition were also examined. The permeability of the debris, and hence its rate of consolidation, is an important factor controlling mobility. The volume of debris flow events was found to be the most significant factor controlling runout distance.
14

Taphonomy of the Sun River Bonebed, Late Cretaceous (Campanian) Two Medicine Formation of Montana

Scherzer, Benjamin Andrew. January 2008 (has links) (PDF)
Thesis (MS)--Montana State University--Bozeman, 2008. / Typescript. Chairperson, Graduate Committee: David Varricchio. Includes bibliographical references (leaves 92-104).
15

Experimental studies of deposition by debris flows : process, characteristics of deposits, and effects of pore-fluid pressure /

Major, Jon J. January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [291]-305).
16

Debris flows in the southern Coast Mountains, British Columbia : dynamic behaviour and physical properties

Jordan, Robert Peter 05 1900 (has links)
Debris flows in the southern Coast Mountains exhibit different dynamic and sedimentologic characteristics, depending on the lithology of their source areas. Fine-textured debris flows originating in the Quaternary volcanic complexes are much more mobile than those originating in the coarse-textured plutonic rocks which form most of this mountain range. Mobility can be described as the velocity of flow, the distance of travel of debris flows, and the slope required to sustain flow. The objectives of this study are to examine the effect of different sediment composition on the mobility of debris flows, and to determine which rheologic models are most applicable for modeling debris flows in these geologic environments. About 25 debris flow events in or adjacent to the southern Coast Mountains were examined, ranging in volume from 10² m³ to over 10⁷ m³. Field methods included sampling of grain-size distribution, measurement of the deposit and channel dimensions, and observation of the stratigraphy of debris flow fans. Shear strength, permeability, and consolidation tests were performed on samples of reconstituted debris, representative of typical fine-textured and coarsetextured debris flows. These samples were also used to model debris flows in a flume. The coarse-textured, plutonic-source, debris flows typically had a distinct, inverselygraded, clast-supported, surface layer of cobbles and boulders. Their deposits tended to be irregular in thickness, with lobes and levees of coarse material. The fine-textured, volcanicsource, debris flows had no such surface layer, and their deposits were generally uniform in thickness and surface morphology. These observations, and corroborating evidence from the flume results, suggest that fine-textured debris flows behave according to the Bingham flow model, while coarse-textured debris flows can be better described by a granular, or dilatant, flow model. A clay content of about 4% in the matrix (sub-4 mm material) is a useful measure to distinguish the two populations. Several debris flow events of intermediate behaviour and sediment composition were also examined. The permeability of the debris, and hence its rate of consolidation, is an important factor controlling mobility. The volume of debris flow events was found to be the most significant factor controlling runout distance. / Arts, Faculty of / Geography, Department of / Graduate
17

Meteorological conditions associated with rain-related periglacial debris flows on Mount Hood, Oregon and Mount Rainier, Washington /

Parker, Lauren E. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 70-74). Also available on the World Wide Web.
18

Characteristics and mechanics of subaqueous debris flows /

Mahgoub, Abdelmagid, January 1998 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 87-94. Also available online.
19

Sedimentologic Changes in the Deposits of an Evolving Lahar-Flood in 2006, Hood River Basin, Mount Hood, Oregon

Poole, Matthew Ray 01 December 2016 (has links)
Over a span of six days from November 2-7, 2006 approximately 43 cm of precipitation fell over the Hood River Basin in Oregon. A lahar was initiated on the Eliot Branch of the Middle Fork Hood River by two or more landslides that occurred on the lateral moraines of the Eliot Glacier on the early part of November 7th, 2006. The Eliot Branch lahar was embedded within the larger regional flood that was occurring in the Hood River Basin and traveled a total of 48 km from the initiation points on the north flank of Mount Hood to the Hood Rivers confluence with the Columbia River. The initiating landslides abruptly transformed into a debris flow upon mixing with flood waters of the Eliot Branch. The debris flow traveled a distance of ~28 km at which point it was transformed first to a hyperconcentrated flow and then to water flow via selective deposition of coarse sediment and progressive dilution by channel flow waters from the East and West Fork Hood Rivers. The transformation from debris flow to hyperconcentrated streamflow was recorded by a thickening wedge of hyperconcentrated streamflow sediments found above and below progressively fining debris flow sediments over a reach of 22 km. Finally, the hyperconcentrated-flow phase of the lahar transformed to water flow and then traveled an additional 20 km to the Hood River delta. Upon reaching the apex of the Hood River delta, depositing sediments led to an expansion of the delta. Debris-flow sediments were predominantly gravel (36.0-69.7% by wt.) with sand (22.1-55.9% by wt.) and fines (4.7-7.8% by wt.). Hyperconcentrated flow deposits contained a larger sand fraction of (66.8-99.2% by wt.) with few gravel clasts (0-26.0% by wt.) and fines (0-8.8% by wt.). Water flow deposits averaged 90.5% (wt.) sand with 6.0% (wt.) gravel and 3.0% (wt.) fines. Sorting was a key factor in flow identification and showed progressive improvement downstream from the initiation point. Sorting values for the flow types are as follows: debris flow deposits ranged from 3.3Φ (very poorly sorted) to 1.8Φ (poorly sorted), hyperconcentrated flow deposits ranged from 2.4Φ (very poorly sorted) to 0.8Φ (moderately sorted), and water flood deposits ranged between 1.4Φ (poorly sorted) to 0.6Φ (moderately sorted).
20

Engineering geology and the assessment of channelised debris-flows: a Hong Kong case study

Bloor, Daniel James. January 2011 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science

Page generated in 0.0677 seconds