• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Retrospect on contemporary Internet organization and its challenges in the future

Gutierrez De Lara, Felipe 25 July 2011 (has links)
The intent of this report is to expose the audience to the contemporary organization of the Internet and to highlight the challenges it has to deal with in the future as well as the current efforts being made to overcome such threats. This report aims to build a frame of reference for how the Internet is currently structured and how the different layers interact together to make it possible for the Internet to exist as we know it. Additionally, the report explores the challenges the current Internet architecture design is facing, the reasons why these challenges are arising, and the multiple efforts taking place to keep the Internet working. In order to reach these objectives I visited multiple sites of organizations whose only reason for existence is to support the Internet and keep it functioning. The approach used to write this report was to research the topic by accessing multiple technical papers extracted from the IEEE database and network conferences reviews and to analyze and expose their findings. This report utilizes this vii information to elaborate on how network engineers are handling the challenges of keeping the Internet functional while supporting dynamic requirements. This report exposes the challenges the Internet is facing with scalability, the existence of debugging tools, security, mobility, reliability, and quality of service. It is explained in brief how each of these challenges are affecting the Internet and the strategies in place to vanquish them. The final objectives are to inform the reader of how the Internet is working with a set of ever changing and growing requirements, give an overview of the multiple institutions dedicated to reinforcing the Internet and provide a list of current challenges and the actions being taken to overcome them. / text
2

Automatic relative debugging

Searle, Aaron James January 2006 (has links)
Relative Debugging is a paradigm that assists users to locate errors in programs that have been corrected or enhanced. In particular, the contents of key data structures in the development version are compared with the contents of the corresponding data structures, in an existing version, as the two programs execute. If the values of two corresponding data structures differ at points where they should not, an error may exist and the user is notified. Relative Debugging requires users to identify the corresponding data structures within the two programs, and the locations at which the comparisons should be performed. To quickly and effectively identify useful data structures and comparison points requires that users have a detailed knowledge of the two programs under consideration. Without a detailed knowledge of the two programs, the task of locating useful data structures and comparison points can quickly become a difficult and time consuming process. Prior to the research detailed in this thesis, the Relative Debugging paradigm did not provide any assistance that allowed users to quickly and effectively identify suitable data structures and program points that will help discover the source of an error. Our research efforts have been directed at enhancing the Relative Debugging paradigm. The outcome of this research is the discovery of techniques that empower Relative Debugging users to become more productive and allow the Relative Debugging paradigm to be significantly enhanced. Specifically, the research has resulted in the following three contributions: 1. A Systematic Approach to Relative Debugging. 2. Data Flow Browsing for Relative Debugging. 3. Automatic Relative Debugging. These contributions have enhanced the Relative Debugging paradigm and allow errors to be localized with little human interaction. Minimizing the user's involvement reduces the cost of debugging programs that have been corrected or enhanced, and has a significant impact on current debugging practices.
3

Software-defined datacenter network debugging

Tammana, Praveen Aravind Babu January 2018 (has links)
Software-defined Networking (SDN) enables flexible network management, but as networks evolve to a large number of end-points with diverse network policies, higher speed, and higher utilization, abstraction of networks by SDN makes monitoring and debugging network problems increasingly harder and challenging. While some problems impact packet processing in the data plane (e.g., congestion), some cause policy deployment failures (e.g., hardware bugs); both create inconsistency between operator intent and actual network behavior. Existing debugging tools are not sufficient to accurately detect, localize, and understand the root cause of problems observed in a large-scale networks; either they lack in-network resources (compute, memory, or/and network bandwidth) or take long time for debugging network problems. This thesis presents three debugging tools: PathDump, SwitchPointer, and Scout, and a technique for tracing packet trajectories called CherryPick. We call for a different approach to network monitoring and debugging: in contrast to implementing debugging functionality entirely in-network, we should carefully partition the debugging tasks between end-hosts and network elements. Towards this direction, we present CherryPick, PathDump, and SwitchPointer. The core of CherryPick is to cherry-pick the links that are key to representing an end-to-end path of a packet, and to embed picked linkIDs into its header on its way to destination. PathDump is an end-host based network debugger based on tracing packet trajectories, and exploits resources at the end-hosts to implement various monitoring and debugging functionalities. PathDump currently runs over a real network comprising only of commodity hardware, and yet, can support surprisingly a large class of network debugging problems with minimal in-network functionality. The key contributions of SwitchPointer is to efficiently provide network visibility to end-host based network debuggers like PathDump by using switch memory as a "directory service" - each switch, rather than storing telemetry data necessary for debugging functionalities, stores pointers to end hosts where relevant telemetry data is stored. The key design choice of thinking about memory as a directory service allows to solve performance problems that were hard or infeasible with existing designs. Finally, we present and solve a network policy fault localization problem that arises in operating policy management frameworks for a production network. We develop Scout, a fully-automated system that localizes faults in a large scale policy deployment and further pin-points the physical-level failures which are most likely cause for observed faults.

Page generated in 0.0371 seconds