• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crystallisation spectrometer

Francis, Philip Sydney, phil.francis@rmit.edu.au January 2002 (has links)
An improved crystallisation spectrometer has been designed, built and tested. It is to be used by others to gain new knowledge about the solidification of matter by study of the crystallisation of hard sphere colloid samples that are an established model for the behaviour of some aspects of atoms. In this crystallisation spectrometer, expanded and collimated green laser light is Bragg scattered from the colloidal crystals as they form, and the diffracted light is focused by a liquid filled hollow glass hemispherical lens onto low cost CCD array detectors that are rotated about the optical axis to average the intensities around the whole Debye-Scherrer cone of scattered light. The temperature of the sample is controlled to +/-0.1„a, and because of the ability to change the refractive index of the sample particles with temperature, this is utilised to control the amount of scattering from the sample Also, this spectrometer uniquely exploits the refractive index match of the colloidal particles, the solvent, the bath liquid, and the glass used for both the sample bottle and the hollow glass hemisphere. A unique facility has been incorporated to permit tumbling of the sample prior to the measurement commencing to shear-melt any pre-existing crystals. This ensures that the sample is completely fluid and is at the correct temperature at the start of the measurement. The instrument is assembled on an optical table and is computer controlled. Results presented show that this new spectrometer with its use of the whole Debye-Scherrer cone of Bragg scattered light and other enhancements gives insight into the crystallisation process more than one order of magnitude of time earlier than previous light scattering experiments, providing new knowledge about the crystallisation process.
2

An Improved Flexible Neutron Detector For Powder Diffraction Experiments

McKnight, Thomas Kevin 08 July 2005 (has links) (PDF)
Large amounts of money are being applied to the construction of the next generation of spallation sources for neutron scattering. Neutron powder diffraction instruments will be an important element of these facilities and the incorporation of detectors into these instruments with a high neutron capture efficiency is desirable. A new detector design named the Flexible Embedded Fiber Detector (FEFD) has been developed and tested for this thesis. This detector is based on wavelength shifting fibers embedded in a zinc-sulfide lithium-fluoride based scintillator. The virtue of this design is that the detecting surface can be curved around the Debye-Scherrer rings. This virtue is lacking in other detector designs, making them more complex and poorer in performance than our FEFD detectors. Monte Carlo calculations were performed to determine the neutron capture efficiencies of our FEFD detectors, which proved to be much higher than those of the proposed powder diffractometer design for the Spallation Neutron Source and about equal with the efficiency for the ISIS powder diffractometer design. Four FEFD detector prototypes were then fabricated and tested at the Intense Pulsed Neutron Source at Argonne National Laboratory. We find that our measured and calculated relative efficiencies are in good agreement.
3

Kinetics and temperature- and pressure-induced polymorphic phase transformations in molecular crystals

Sheridan, Andrew Keith January 1994 (has links)
No description available.

Page generated in 0.0324 seconds