• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions in Decentralized Environments

Allen, Martin William 01 February 2009 (has links)
The decentralized Markov decision process (Dec-POMDP) is a powerful formal model for studying multiagent problems where cooperative, coordinated action is optimal, but each agent acts based on local data alone. Unfortunately, it is known that Dec-POMDPs are fundamentally intractable: they are NEXP-complete in the worst case, and have been empirically observed to be beyond feasible optimal solution.To get around these obstacles, researchers have focused on special classes of the general Dec-POMDP problem, restricting the degree to which agent actions can interact with one another. In some cases, it has been proven that these sorts of structured forms of interaction can in fact reduce worst-case complexity. Where formal proofs have been lacking, empirical observations suggest that this may also be true for other cases, although less is known precisely.This thesis unifies a range of this existing work, extending analysis to establish novel complexity results for some popular restricted-interaction models. We also establish some new results concerning cases for which reduced complexity has been proven, showing correspondences between basic structural features and the potential for dimensionality reduction when employing mathematical programming techniques.As our new complexity results establish that worst-case intractability is more widespread than previously known, we look to new ways of analyzing the potential average-case difficulty of Dec-POMDP instances. As this would be extremely difficult using the tools of traditional complexity theory, we take a more empirical approach. In so doing, we identify new analytical measures that apply to all Dec-POMDPs, whatever their structure. These measures allow us to identify problems that are potentially easier to solve on average, and validate this claim empirically. As we show, the performance of well-known optimal dynamic programming methods correlates with our new measure of difficulty. Finally, we explore the approximate case, showing that our measure works well as a predictor of difficulty there, too, and provides a means of setting algorithm parameters to achieve far more efficient performance.
2

Multi-Agent Reinforcement Learning Approaches for Distributed Job-Shop Scheduling Problems

Gabel, Thomas 10 August 2009 (has links)
Decentralized decision-making is an active research topic in artificial intelligence. In a distributed system, a number of individually acting agents coexist. If they strive to accomplish a common goal, the establishment of coordinated cooperation between the agents is of utmost importance. With this in mind, our focus is on multi-agent reinforcement learning (RL) methods which allow for automatically acquiring cooperative policies based solely on a specification of the desired joint behavior of the whole system.The decentralization of the control and observation of the system among independent agents, however, has a significant impact on problem complexity. Therefore, we address the intricacy of learning and acting in multi-agent systems by two complementary approaches.First, we identify a subclass of general decentralized decision-making problems that features regularities in the way the agents interact with one another. We show that the complexity of optimally solving a problem instance from this class is provably lower than solving a general one.Although a lower complexity class may be entered by sticking to certain subclasses of general multi-agent problems, the computational complexitymay be still so high that optimally solving it is infeasible. Hence, our second goal is to develop techniques capable of quickly obtaining approximate solutions in the vicinity of the optimum. To this end, we will develop and utilize various model-free reinforcement learning approaches.Many real-world applications are well-suited to be formulated in terms of spatially or functionally distributed entities. Job-shop scheduling represents one such application. We are going to interpret job-shop scheduling problems as distributed sequential decision-making problems, to employ the multi-agent RL algorithms we propose for solving such problems, and to evaluate the performance of our learning approaches in the scope of various established scheduling benchmark problems.

Page generated in 0.0223 seconds