Spelling suggestions: "subject:"decarboxylation."" "subject:"decarboxylations.""
11 |
Studies towards the total synthesis of lactacystin and its derivativesHamzah, Ahmad Sazali January 2000 (has links)
This thesis has been divided into three main sections. The first chapter contains a review of the total synthesis of lactacystin and also its derivatives. Chapter two consists of our own synthetic work, and experimental details are provided in chapter three.
|
12 |
Spontaneous, metal-catalyzed, and enzyme-catalyzed decarboxylation of oxalosuccinic acid /Sincoff, Steven Lawrence January 1980 (has links)
No description available.
|
13 |
Studies on the ornithine decarboxylase of rat liver /Bitonti, Alan Joseph January 1978 (has links)
No description available.
|
14 |
pH Dependence of the Kinetic Parameters for the Oxalacetate Decarboxylation and Pyruvate Reduction Reactions Catalyzed by Malic EnzymePark, Sang-Hoon 08 1900 (has links)
Ascaris suum NAD-malic enzyme catalyzes the decarboxylation of oxalacetate and reduction of pyruvate. Thus, the present classification (E.C. 1.1.1.39) for this enzyme should be changed to E.C. 1.1.1.38. In the absence of nucleotide, both the chicken liver NADP-malic enzyme and Ascaris suum NAD-malic enzymes catalyze the decarboxylation of oxalacetate. A study of the pH dependence of kinetic parameters for oxalacetate decarboxylation and pyruvate reduction was carried out for the NAD(P)-malic enzyme with Mg^2+ and Mn^2+ in the presence and absence of nucleotide. In all cases, an enzyme residue is required in its protonated form for reaction while for oxalacetate decarboxylation the β-carboxyl of oxalacetate is required unprotonated. Of a number of inhibitory binding analogs of malate tested, oxalate is the tightest binding inhibitor for Ascaris suum enzyme.
|
15 |
Tyrosine decarboxylation and related reactions in plantsGallon, John R. January 1970 (has links)
No description available.
|
16 |
Late transition metals in the synthesis of arenes and heteroarenesAshwood, Sarah January 2015 (has links)
The use of transition metals in synthesis is an incredibly useful tool for organic chemists. Co-ordination of a metal can occur with most function groups in some manner resultingin dramatic changes in the reactivity. Decarboxylative cross-couplings provide a new route to the construction of C–C bondswithout the necessity of costly organometallic precursors. Similarly C–H activationprovides an environmentally and economically desirable method to cross-couplingproducts, and this can be facilitated by the presence of ortho-directing groups. Thedecarboxylative coupling of carboxylic acids, combined with carboxylate directed C–Hactivation has been investigated to demonstrate ortho-arylation and acylation of benzoicacids. In doing so the different functionality of the carboxylate group is demonstrated inone process. Following this, a mild ZnEt2 mediated 1,5-substituted 1,2,3-triazole formation reactionhas been investigated. Significantly, this method is compatible with many differentsubstrates including halides, esters, nitriles, ketones and amides which have proven to beincompatible with analogous Mg or Li methods. The resultant heteroaryl zinc can beutilised further in cross-coupling reactions, or with other electrophiles, enabling theformation of a wide range of substituted triazoles.
|
17 |
Mechanisms of Decarboxylation: Internal Return, Water Addition, and Their Isotope EffectsMundle, Scott Owen Chelmsford 31 August 2010 (has links)
2-(2-mandelyl)thiamin (MTh), the adduct of benzoylformate and thiamin, is an accurate model of 2-(2-mandelyl)thiamin diphosphate, the initial covalent intermediate in the decarboxylation of benzoylformate by benzoylformate decarboxylase (BFDC). The first order rate constant for spontaneous decarboxylation of MTh is about 106 times smaller than the enzymic rate (kcat) for the BFDC reaction. Based on the similarities of MTh and the corresponding enzymic intermediate, as well as the inherent nature of the intermediate, it is not obvious why the enzyme-catalyzed reaction is so much faster. However, earlier studies showed that the decarboxylation of MTh is catalyzed by protonated pyridines and this was proposed to occur through a preassociation mechanism. If this explanation is correct, then the observed 12C/13C kinetic isotope effect (CKIE) will increase in the presence of the catalyst as a more favorable forward commitment is made possible. This provides a specific model for the enzyme-catalyzed process.
We developed a technique using headspace analysis and compound specific isotope analysis (CSIA) to determine the CKIE for the decarboxylation of MTh in the presence and absence of pyridinium. We found that the CKIE increases in the presence of the catalyst, as predicted for the preassociation mechanism.
In a related study, we investigated the kinetics of decarboxylation of pyrrole-2-carboxylic acid, which was known to be subject to acid catalysis in highly acidic solutions. In the expected mechanism, protonation of the pyrrole ring at C2 destroys the aromaticity of the ring. C-C bond cleavage in the process of decarboxylation will re-establish the aromatic pyrrole. However, the overall reaction rate would not increase as it is counteracted by a larger concentration of the undissociated carboxyl group compared to carboxylate ion necessary for decarboxylation.
Since the reaction occurs readily, there must be an alternative pathway for the acid-catalyzed reaction. This can be achieved in an associative mechanism that is initiated by addition of water to the carboxyl group of the carboxyl-protonated reactant. C-C bond cleavage results in formation of pyrrole and protonated carbonic acid, a species that has been recognized as a viable intermediate in related processes. Protonated carbonic acid is spontaneously converted to H3O+ and carbon dioxide. The associative mechanism is consistent with solvent-deuterium kinetic isotope effects and 12C/13C kinetic isotope effects.
|
18 |
Mechanisms of Decarboxylation: Internal Return, Water Addition, and Their Isotope EffectsMundle, Scott Owen Chelmsford 31 August 2010 (has links)
2-(2-mandelyl)thiamin (MTh), the adduct of benzoylformate and thiamin, is an accurate model of 2-(2-mandelyl)thiamin diphosphate, the initial covalent intermediate in the decarboxylation of benzoylformate by benzoylformate decarboxylase (BFDC). The first order rate constant for spontaneous decarboxylation of MTh is about 106 times smaller than the enzymic rate (kcat) for the BFDC reaction. Based on the similarities of MTh and the corresponding enzymic intermediate, as well as the inherent nature of the intermediate, it is not obvious why the enzyme-catalyzed reaction is so much faster. However, earlier studies showed that the decarboxylation of MTh is catalyzed by protonated pyridines and this was proposed to occur through a preassociation mechanism. If this explanation is correct, then the observed 12C/13C kinetic isotope effect (CKIE) will increase in the presence of the catalyst as a more favorable forward commitment is made possible. This provides a specific model for the enzyme-catalyzed process.
We developed a technique using headspace analysis and compound specific isotope analysis (CSIA) to determine the CKIE for the decarboxylation of MTh in the presence and absence of pyridinium. We found that the CKIE increases in the presence of the catalyst, as predicted for the preassociation mechanism.
In a related study, we investigated the kinetics of decarboxylation of pyrrole-2-carboxylic acid, which was known to be subject to acid catalysis in highly acidic solutions. In the expected mechanism, protonation of the pyrrole ring at C2 destroys the aromaticity of the ring. C-C bond cleavage in the process of decarboxylation will re-establish the aromatic pyrrole. However, the overall reaction rate would not increase as it is counteracted by a larger concentration of the undissociated carboxyl group compared to carboxylate ion necessary for decarboxylation.
Since the reaction occurs readily, there must be an alternative pathway for the acid-catalyzed reaction. This can be achieved in an associative mechanism that is initiated by addition of water to the carboxyl group of the carboxyl-protonated reactant. C-C bond cleavage results in formation of pyrrole and protonated carbonic acid, a species that has been recognized as a viable intermediate in related processes. Protonated carbonic acid is spontaneously converted to H3O+ and carbon dioxide. The associative mechanism is consistent with solvent-deuterium kinetic isotope effects and 12C/13C kinetic isotope effects.
|
19 |
Mechanistic studies on quinolinate phosphoribosyltransferase /Catton, Gemma R. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, December 2007. / Restricted until 12th December 2008.
|
20 |
Theoretical and Experimental Studies of Cryogenic and Hydrothermal Organic GeochemistryJanuary 2012 (has links)
abstract: This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon Titan. Titan has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most famously as lakes. Photochemical reactions produce solid organics in Titan's atmosphere, and these materials settle onto the surface. At the surface, liquids can interact with solids, and geochemical processes can occur. To better understand these processes, I developed a thermodynamic model that can be used to calculate the solubilities of gases and solids in liquid hydrocarbons at cryogenic temperatures. The model was parameterized using experimental data, and provides a good fit to the data. Application of the model to Titan reveals that the equilibrium composition of surface liquids depends on the abundance of methane in the local atmosphere. The model also indicates that solid acetylene should be quite soluble in surface liquids, which implies that acetylene-rich rocks should be susceptible to chemical erosion, and acetylene evaporites may form on Titan. In the latter half of this dissertation, I focus on hot organic geochemistry below the surface of the Earth. Organic compounds are common in sediments. Burial of sediments leads to changes in physical and chemical conditions, promoting organic reactions. An important organic reaction in subsurface environments is decarboxylation, which generates hydrocarbons and carbon dioxide from simple organic acids. Fundamental knowledge about decarboxylation is required to better understand how the organic and inorganic compositions of sediments evolve in response to changing geochemical conditions. I performed experiments with the model compound phenylacetic acid to obtain information about mechanisms of decarboxylation in hydrothermal fluids. Patterns in rates of decarboxylation of substituted phenylacetic acids point to a mechanism that proceeds through a ring-protonated zwitterion of phenylacetic acid. In contrast, substituted sodium phenylacetates exhibit a different kinetic pattern, one that is consistent with the formation of the benzyl anion as an intermediate. Results from experiments with added hydrochloric acid or sodium hydroxide, and deuterated water agree with these interpretations. Thus, speciation dictates mechanism of decarboxylation. / Dissertation/Thesis / Ph.D. Geological Sciences 2012
|
Page generated in 0.1174 seconds