• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ferramentas de Aproximação em Espaços Compactos 2-Homogêneos / Approximation Tools on Compact Two-Point Homogeneous Spaces

Faria, Angelina Carrijo de Oliveira Ganancin 09 August 2019 (has links)
Neste trabalho apresentamos duas caracterizações para o K-funcional do tipo Peetre sobre os espaços compactos 2-homogêneos. Provamos a equivalência no sentido assintótico entre o módulo de suavidade de ordem fracionária e o K-funcional do tipo Peetre, e a equivalência deste último com o raio de aproximação de um operator multiplicativo definido para este propósito. Como consequência obtivemos a desigualdade de Marchaud, neste contexto. Estes resultados generalizam os equivalentes, e bem conhecidos, sobre o contexto esférico. As caracterizações foram aplicadas para mostrar que uma condição abstrata de Hölder, ou de diferenciabilidade de ordem finita, sobre núcleos que geram operadores integrais positivos, implica a obtenção de uma taxa de decrescimento polinomial para suas sequências de autovalores. / We prove two characterization for the Peetre type K-functional on M, a compact two-point homogeneous space. One in terms the rate of approximation of a family of multipliers operator defined to this purpose, and another in terms of the fractional moduli of smoothness. As a direct consequence of those we obtained the Marchaud inequality on this framework. These extend the well known results on the spherical setting. The characterizations are employed to show that an abstract Hölder condition or finite order of differentiability condition imposed on kernels generating certain operators implies a sharp decay rates for their eigenvalues sequences.

Page generated in 0.1057 seconds