• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parcel-Level Green Stormwater Management Policy: What New Orleans Can Learn from Philadelphia’s Parcel-Based Utility Fee

Riggs, Spence 18 December 2014 (has links)
The Greater New Orleans Urban Water Plan promotes the ideology of integrating green infrastructure into the City’s water management strategy to cultivate resiliency. In order to develop enough green infrastructure to have a significant impact on the hydrological functioning of the area, New Orleans officials are investigating different options for encouraging property owners to manage their stormwater on-site. Philadelphia Water Department’s parcel-based stormwater utility fee has been offered as a model for working within the constraints of the municipal government’s regulatory authority to increase the water retention capacity of individual properties. This thesis provides an analysis of Philadelphia Water Department’s stormwater utility policy and offers recommendations to other cities, like New Orleans, that are considering adopting a similar policy in their jurisdiction.
2

Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

Khurelbaatar, Ganbaatar, van Afferden, Manfred, Ueberham, Maximilian, Stefan, Michael, Geyler, Stefan, Müller, Roland A. 09 May 2023 (has links)
Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level.

Page generated in 0.0934 seconds