Spelling suggestions: "subject:"decentralized processing"" "subject:"recentralized processing""
1 |
Scalable Estimation on Linear and Nonlinear Regression Models via Decentralized Processing: Adaptive LMS Filter and Gaussian Process Regression / 分散処理による線形・非線形回帰モデルでのスケーラブルな推定:適応LMSフィルタとガウス過程回帰Nakai, Ayano 24 November 2021 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第23588号 / 情博第782号 / 新制||情||133(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 田中 利幸, 教授 下平 英寿, 准教授 櫻間 一徳 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
2 |
Decentralized multiantenna transceiver optimization for heterogeneous networksKaleva, J. (Jarkko) 19 June 2018 (has links)
Abstract
This thesis focuses on transceiver optimization for heterogeneous multi-user multiple-input multiple-output (MIMO) wireless communications systems. The aim is to design decentralized beamforming methods with low signaling overhead for improved spatial spectrum utilization. A wide range of transceiver optimization techniques are covered, with particular consideration of decentralized optimization, fast convergence, computational complexity and signaling limitations.
The proposed methods are shown to provide improved rate of convergence, when compared to the conventional weighted minimum MSE (WMMSE) approach. This makes them suitable for time-correlated channel conditions, in which the ability to follow the changing channel conditions is essential. Coordinated beamforming under quality of service (QoS) constraints is considered for interfering broadcast channel. Decomposition based decentralized processing approaches are shown to enable the weighted sum rate maximization (WSRMax) in time-correlated channel conditions.
Pilot-aided decentralized WSRMax beamformer estimation is studied for coordinated multi-point (CoMP) joint processing (JP). In stream specific estimation (SSE), all effective channels are individually estimated. The beamformers are then constructed from the locally estimated channels. On the other hand, with direct estimation (DE) of the beamformers, only the intended signal needs to be separately estimated and the covariance matrices are implicitly estimated from the received pilot training matrices. This makes the pilot design more robust to pilot contamination. These methods show that CoMP JP is feasible even in relatively fading channel conditions and with limited backhaul capacity by employing decentralized beamformer processing.
In the final part of the thesis, a relay-assisted cellular system with decentralized processing is considered, in which users are served either directly by the base stations or via relays for WSRMax or sum power minimization subject to rate constraints. Zero-forcing and coordinated beamforming provide a trade-off between complexity, in-band signaling and spectrum utilization. Relays are shown to be beneficial in many scenarios when the in-band signaling is accounted for.
This thesis shows that decentralized downlink MIMO transceiver design with a reasonable computational complexity is feasible in various system architectures even when signaling resources are limited and channel conditions are moderately fast fading. / Tiivistelmä
Tämä väitöskirja keskittyy lähetin- ja vastaanotinoptimointiin heterogeenisissä monikäyttäjä- ja moniantennijärjestelmissä. Tavoitteena on parantaa tilatason suorituskykyä tutkimalla hajautettuja keilanmuodostusmenetelmiä, joissa ohjaussignaloinnin tarve on alhainen. Erityisesti keskitytään hajautetun keilanmuodostuksen optimointiin, nopeaan konvergenssiin, laskennalliseen kompleksisuuteen sekä signaloinnin rajoitteisiin.
Esitettyjen menetelmien osoitetaan parantavan konvergenssinopeutta ja vähentävän signaloinnin tarvetta, verrattaessa tunnettuun WMMSE-menetelmään. Nämä mahdollistavat lähetyksen aikajatkuvissa kanavissa, joissa kanavan muutosten seuraaminen on erityisen tärkeää. Näiden menetelmien osoitetaan mahdollistavan hajautetun ja priorisoidun tiedonsiirtonopeuden maksimoinnin monisolujärjestelmissä sekä aikajatkuvissa kanavissa käyttäjäkohtaisilla siirtonopeustakuilla.
Pilottiavusteisten lähetys- ja vastaanotinkeilojen estimointia tutkitaan yhteislähetysjärjestelmissä. Yksittäisten lähetyskanavien estimoinnissa effektiiviset kanavat estimoidaan yksitellen, ja lähetys- ja vastaanotinkovarianssimatriisit muodostetaan summaamalla paikalliset kanavaestimaatit. Suoraestimoinnissa ainoastaan oman käyttäjän effektiivinen kanava estimoimaan erikseen. Tällöin kovarianssimatriisit saadaan suoraan vastaanotetuista pilottisignaaleista. Tämä tekee estimaateista vähemmän herkkiä häiriölle. Hajautetun yhteislähetyksen osoitetaan olevan mahdollista, jopa verrattain nopeasti muuttuvissa kanavissa sekä rajallisella verkkoyhteydellä lähettimien välillä.
Viimeisessä osassa tutkitaan välittäjä-avusteisia järjestelmiä, joissa käyttäjiä palvellaan joko suoraan tukiasemasta tai välittäjä-aseman kautta. Optimointikriteereinä käytetään siirtonopeuden maksimointia sekä lähetystehon minimointia siirtonopeustakuilla. Nollaanpakottava sekä koordinoitu keilanmuodostus tarjoavat valinna laskennallisen kompleksisuuden, ohjaussignaloinnin sekä suorituskyvyn välillä. Välittäjä-avusteisen lähetyksen osoitetaan olevan hyödyllisiä useissa tilanteissa, kun radiorajanpinnan yli tapahtuvan signaloinnin tarve otetaan huomioon keilanmuodostuksessa.
Tässä väitöskirjassa osoitetaan hajautetun keilanmuodostuksen olevan mahdollista verrattaen vähäisillä laskennallisilla resursseilla heterogeenisissä moniantennijärjestelmissä. Esitetyt menetelmät tarjoavat ratkaisuja järjestelmiin, joissa ohjaussignalointiresurssit ovat rajallisia ja radiokanava on jatkuvasti muuttuva.
|
3 |
Coordinated beamforming in cellular and cognitive radio networksPennanen, H. (Harri) 08 September 2015 (has links)
Abstract
This thesis focuses on the design of coordinated downlink beamforming techniques for wireless multi-cell multi-user multi-antenna systems. In particular, cellular and cognitive radio networks are considered. In general, coordinated beamforming schemes aim to improve system performance, especially at the cell-edge area, by controlling inter-cell interference. In this work, special emphasis is put on practical coordinated beamforming designs that can be implemented in a decentralized manner by relying on local channel state information (CSI) and low-rate backhaul signaling. The network design objective is the sum power minimization (SPMin) of base stations (BSs) while providing the guaranteed minimum rate for each user.
Decentralized coordinated beamforming techniques are developed for cellular multi-user multiple-input single-output (MISO) systems. The proposed iterative algorithms are based on classical primal and dual decomposition methods. The SPMin problem is decomposed into two optimization levels, i.e., BS-specific subproblems for the beamforming design and a network-wide master problem for the inter-cell interference coordination. After the acquisition of local CSI, each BS can independently compute its transmit beamformers by solving the subproblem via standard convex optimization techniques. Interference coordination is managed by solving the master problem via a traditional subgradient method that requires scalar information exchange between the BSs. The algorithms make it possible to satisfy the user-specific rate constraints for any iteration. Hence, delay and signaling overhead can be reduced by limiting the number of performed iterations. In this respect, the proposed algorithms are applicable to practical implementations unlike most of the existing decentralized approaches. The numerical results demonstrate that the algorithms provide significant performance gains over zero-forcing beamforming strategies.
Coordinated beamforming is also studied in cellular multi-user multiple-input multiple-output (MIMO) systems. The corresponding non-convex SPMin problem is divided into transmit and receive beamforming optimization steps that are alternately solved via successive convex approximation method and the linear minimum mean square error criterion, respectively, until the desired level of convergence is attained. In addition to centralized design, two decentralized primal decomposition-based algorithms are proposed wherein the transmit and receive beamforming designs are facilitated by a combination of pilot and backhaul signaling. The results show that the proposed MIMO algorithms notably outperform the MISO ones.
Finally, cellular coordinated beamforming strategies are extended to multi-user MISO cognitive radio systems, where primary and secondary networks share the same spectrum. Here, network optimization is performed for the secondary system with additional interference constraints imposed for the primary users. Decentralized algorithms are proposed based on primal decomposition and an alternating direction method of multipliers. / Tiivistelmä
Tämä väitöskirja keskittyy yhteistoiminnallisten keilanmuodostustekniikoiden suunnitteluun langattomissa monisolu- ja moniantennijärjestelmissä, erityisesti solukko- ja kognitiiviradioverkoissa. Yhteistoiminnalliset keilanmuodostustekniikat pyrkivät parantamaan verkkojen suorituskykyä kontrolloimalla monisoluhäiriötä, erityisesti tukiasemasolujen reuna-alueilla. Tässä työssä painotetaan erityisesti käytännöllisten yhteistoiminnallisten keilanmuodostustekniikoiden suunnittelua, joka voidaan toteuttaa hajautetusti perustuen paikalliseen kanavatietoon ja tukiasemien väliseen informaationvaihtoon. Verkon suunnittelutavoite on minimoida tukiasemien kokonaislähetysteho samalla, kun jokaiselle käyttäjälle taataan tietty vähimmäistiedonsiirtonopeus.
Hajautettuja yhteistoiminnallisia keilanmuodostustekniikoita kehitetään moni-tulo yksi-lähtö -solukkoverkoille. Oletuksena on, että tukiasemat ovat varustettuja monilla lähetysantenneilla, kun taas päätelaitteissa on vain yksi vastaanotinantenni. Ehdotetut iteratiiviset algoritmit perustuvat klassisiin primaali- ja duaalihajotelmiin. Lähetystehon minimointiongelma hajotetaan kahteen optimointitasoon: tukiasemakohtaisiin aliongelmiin keilanmuodostusta varten ja verkkotason pääongelmaan monisoluhäiriön hallintaa varten. Paikallisen kanavatiedon hankkimisen jälkeen jokainen tukiasema laskee itsenäisesti lähetyskeilansa ratkaisemalla aliongelmansa käyttäen apunaan standardeja konveksioptimointitekniikoita. Monisoluhäiriötä kontrolloidaan ratkaisemalla pääongelma käyttäen perinteistä aligradienttimenetelmää. Tämä vaatii tukiasemien välistä informaationvaihtoa. Ehdotetut algoritmit takaavat käyttäjäkohtaiset tiedonsiirtonopeustavoitteet jokaisella iterointikierroksella. Tämä mahdollistaa viiveen pienentämisen ja tukiasemien välisen informaatiovaihdon kontrolloimisen. Tästä syystä ehdotetut algoritmit soveltuvat käytännön toteutuksiin toisin kuin useimmat aiemmin ehdotetut hajautetut algoritmit. Numeeriset tulokset osoittavat, että väitöskirjassa ehdotetut algoritmit tuovat merkittävää verkon suorituskyvyn parannusta verrattaessa aiempiin nollaanpakotus -menetelmiin.
Yhteistoiminnallista keilanmuodostusta tutkitaan myös moni-tulo moni-lähtö -solukkoverkoissa, joissa tukiasemat sekä päätelaitteet ovat varustettuja monilla antenneilla. Tällaisessa verkossa lähetystehon minimointiongelma on ei-konveksi. Optimointiongelma jaetaan lähetys- ja vastaanottokeilanmuodostukseen, jotka toistetaan vuorotellen, kunnes algoritmi konvergoituu. Lähetyskeilanmuodostusongelma ratkaistaan peräkkäisillä konvekseilla approksimaatioilla. Vastaanottimen keilanmuodostus toteutetaan summaneliövirheen minimoinnin kautta. Keskitetyn algoritmin lisäksi tässä työssä kehitetään myös kaksi hajautettua algoritmia, jotka perustuvat primaalihajotelmaan. Hajautettua toteutusta helpotetaan pilottisignaloinnilla ja tukiasemien välisellä informaationvaihdolla. Numeeriset tulokset osoittavat, että moni-tulo moni-lähtö -tekniikoilla on merkittävästi parempi suorituskyky kuin moni-tulo yksi-lähtö -tekniikoilla.
Lopuksi yhteistoiminnallista keilanmuodostusta tarkastellaan kognitiiviradioverkoissa, joissa primaari- ja sekundaarijärjestelmät jakavat saman taajuuskaistan. Lähetystehon optimointi suoritetaan sekundaariverkolle samalla minimoiden primaarikäyttäjille aiheuttamaa häiriötä. Väitöskirjassa kehitetään kaksi hajautettua algoritmia, joista toinen perustuu primaalihajotelmaan ja toinen kerrointen vaihtelevan suunnan menetelmään.
|
Page generated in 0.0887 seconds