• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Comparison of Public Bike Demand Predictions: The Impact of Weather and Air Pollution

Min Namgung (9380318) 15 December 2020 (has links)
Many metropolitan cities motivate people to exploit public bike-sharing programs as alternative transportation for many reasons. Due to its’ popularity, multiple types of research on optimizing public bike-sharing systems is conducted on city-level, neighborhood-level, station-level, or user-level to predict the public bike demand. Previously, the research on the public bike demand prediction primarily focused on discovering a relationship with weather as an external factor that possibly impacted the bike usage or analyzing the bike user trend in one aspect. This work hypothesizes two external factors that are likely to affect public bike demand: weather and air pollution. This study uses a public bike data set, daily temperature, precipitation data, and air condition data to discover the trend of bike usage using multiple machine learning techniques such as Decision Tree, Naïve Bayes, and Random Forest. After conducting the research, each algorithm’s output is evaluated with performance comparisons such as accuracy, precision, or sensitivity. As a result, Random Forest is an efficient classifier for the bike demand prediction by weather and precipitation, and Decision Tree performs best for the bike demand prediction by air pollutants. Also, the three class labelings in the daily bike demand has high specificity, and is easy to trace the trend of the public bike system.

Page generated in 0.0683 seconds