• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Operational Knowledge Acquisition of Refuse Incinerator Using Data Mining Techniques

Lai, Po-Chuan 05 August 2005 (has links)
The physical and chemical mechanisms in a refuse ncinerator are complex. It is difficult to make a full comprehension of the system without a thorough research and long-term on-site experiments. In addition, many sensors are equipped in refuse incineration plant and much data are collected, those data were supposed to be useful since there may be some operational experience within. But to cope with the huge data that may exceed the computation capability, sequential Forward Floating Search algorithm (SFFS) is used to reduce the data dimension and find relevant features as well as to remove redundant information. In this research, data mining technique is applied toward three critical target attributes, steam production, NOx and SOx, to build decision tree models and extract operational experiences in the form of decision rules. Those models are evaluated by predicting accuracies, and rules extracted from decision tree models are also of great help to the on-site operation and prediction as well.
2

Decision Tree Classification Of Multi-temporal Images For Field-based Crop Mapping

Sencan, Secil 01 August 2004 (has links) (PDF)
ABSTRACT DECISION TREE CLASSIFICATION OF MULTI-TEMPORAL IMAGES FOR FIELD-BASED CROP MAPPING Sencan, Se&ccedil / il M. Sc., Department of Geodetic and Geographic Information Technologies Supervisor: Assist. Prof. Dr. Mustafa T&uuml / rker August 2004, 125 pages A decision tree (DT) classification approach was used to identify summer (August) crop types in an agricultural area near Karacabey (Bursa), Turkey from multi-temporal images. For the analysis, Landsat 7 ETM+ images acquired in May, July, and August 2000 were used. In addition to the original bands, NDVI, PCA, and Tasselled Cap Transformation bands were also generated and included in the classification procedure. Initially, the images were classified on a per-pixel basis using the multi-temporal masking technique together with the DT approach. Then, the classified outputs were applied a field-based analysis and the class labels of the fields were directly entered into the Geographical Information System (GIS) database. The results were compared with the classified outputs of the three dates of imagery generated using a traditional maximum likelihood (ML) algorithm. It was observed that the proposed approach provided significantly higher overall accuracies for the May and August images, for which the number of classes were low. In May and July, the DT approach produced the classification accuracies of 91.10% and 66.15% while the ML classifier produced 84.38% and 63.55%, respectively. However, in August nearly the similar overall accuracies were obtained for the ML (70.82%) and DT (69.14%) approaches. It was also observed that the use of additional bands for the proposed technique improved the separability of the sugar beet, tomato, pea, pepper, and rice classes.

Page generated in 0.1071 seconds