Spelling suggestions: "subject:"codecision problems"" "subject:"bydecision problems""
11 |
Des algorithmes presque optimaux pour les problèmes de décision séquentielle à des fins de collecte d'information / Near-Optimal Algorithms for Sequential Information-Gathering Decision ProblemsAraya-López, Mauricio 04 February 2013 (has links)
Cette thèse s'intéresse à des problèmes de prise de décision séquentielle dans lesquels l'acquisition d'information est une fin en soi. Plus précisément, elle cherche d'abord à savoir comment modifier le formalisme des POMDP pour exprimer des problèmes de collecte d'information et à proposer des algorithmes pour résoudre ces problèmes. Cette approche est alors étendue à des tâches d'apprentissage par renforcement consistant à apprendre activement le modèle d'un système. De plus, cette thèse propose un nouvel algorithme d'apprentissage par renforcement bayésien, lequel utilise des transitions locales optimistes pour recueillir des informations de manière efficace tout en optimisant la performance escomptée. Grâce à une analyse de l'existant, des résultats théoriques et des études empiriques, cette thèse démontre que ces problèmes peuvent être résolus de façon optimale en théorie, que les méthodes proposées sont presque optimales, et que ces méthodes donnent des résultats comparables ou meilleurs que des approches de référence. Au-delà de ces résultats concrets, cette thèse ouvre la voie (1) à une meilleure compréhension de la relation entre la collecte d'informations et les politiques optimales dans les processus de prise de décision séquentielle, et (2) à une extension des très nombreux travaux traitant du contrôle de l'état d'un système à des problèmes de collecte d'informations / The purpose of this dissertation is to study sequential decision problems where acquiring information is an end in itself. More precisely, it first covers the question of how to modify the POMDP formalism to model information-gathering problems and which algorithms to use for solving them. This idea is then extended to reinforcement learning problems where the objective is to actively learn the model of the system. Also, this dissertation proposes a novel Bayesian reinforcement learning algorithm that uses optimistic local transitions to efficiently gather information while optimizing the expected return. Through bibliographic discussions, theoretical results and empirical studies, it is shown that these information-gathering problems are optimally solvable in theory, that the proposed methods are near-optimal solutions, and that these methods offer comparable or better results than reference approaches. Beyond these specific results, this dissertation paves the way (1) for understanding the relationship between information-gathering and optimal policies in sequential decision processes, and (2) for extending the large body of work about system state control to information-gathering problems
|
12 |
Compressed Decision Problems in Groups / Komprimierte Entscheidungsprobleme in GruppenHaubold, Niko 19 March 2012 (has links) (PDF)
Wir beschäftigen uns mit Problemen der algorithmischen Gruppentheorie und untersuchen dabei die Komplexität von komprimierten Versionen des Wortproblems und des Konjugationsproblems für endlich erzeugte Gruppen.
Das Wortproblem fragt für eine feste, endlich erzeugte Gruppe ob ein gegebenes Wort über der Erzeugermenge das neutrale Element der Gruppe repräsentiert. Wir betrachten das gegebene Wort jedoch in einer komprimierten Form, als Straight-line Program (SLP) und untersuchen die Komplexität dieses Problems, das wir \'komprimiertes Wortproblem\' nennen. SLPs sind kontextfreie Grammatiken, die genau einen String erzeugen. Die Eingabegröße ist dabei stets die Größe des gegebenen SLPs. Eine Hauptmotivation ist dabei, dass für eine feste endlich erzeugte Gruppe das Wortproblem ihrer Automorphismengruppe durch eine Turingmaschine in Polynomialzeit auf das komprimierte Wortproblem der Gruppe selbst reduzierbar ist.
Wir untersuchen das komprimierte Wortproblem für die verbreiteten Gruppenerweiterungen HNN-Erweiterungen (amalgamierte Produkte und Graphprodukte) und können zeigen, dass sich Instanzen des komprimierten Wortproblems von einer Turingmaschine in Polynomialzeit auf Instanzen des komprimierten Wortproblems der Basisgruppe (respektive Basisgruppen und Knotengruppen) reduzieren lassen. Weiterhin zeigen wir, dass das komprimierte Wortproblem für endlich erzeugte nilpotente Gruppen von einer Turingmaschine in Polynomialzeit entscheidbar ist.
Wir betrachten außerdem eine komprimierte Variante des Konjugationsproblems. Das unkomprimierte Konjugationsproblem fragt für zwei gegebene Wörter über den Erzeugern einer festen endlich erzeugten Gruppe, ob sie in dieser Gruppe konjugiert sind. Beim komprimierten Konjugationsproblem besteht die Eingabe aus zwei SLPs und es wird gefragt, ob die beiden Wörter die von den SLPs erzeugt werden in der Gruppe konjugierte Elemente präsentieren. Wir konnten zeigen, dass sich das komprimierte Konjugationsproblem für Graphgruppen in Polynomialzeit entscheiden lässt.
Weiterhin haben wir das Wortproblem der äußeren Automorphismengruppen von Graphprodukten endlich erzeugter Gruppen untersucht. Durch den engen Zusammenhang des komprimierten Konjugationsproblems einer Gruppe mit dem Wortproblem der äußeren Automorphismengruppe konnten wir zeigen, dass sich das Wortproblem der äußeren Automorphismengruppe eines Graphprodukts von endlich erzeugten Gruppen durch eine Turingmaschine in Polynomialzeit auf Instanzen von simultanen komprimierten Konjugationsproblemen der Knotengruppen und Instanzen von komprimierten Wortproblemen der Knotengruppen reduzieren lässt.
Als Anwendung gelten obige Resultate auch für right-angled Coxetergruppen und Graphgruppen, da beide spezielle Graphprodukte sind. So folgt beispielsweise, dass das komprimierte Wortproblem einer right-angled Coxetergruppe in Polynomialzeit entscheidbar ist.
|
13 |
Compressed Decision Problems in GroupsHaubold, Niko 02 January 2012 (has links)
Wir beschäftigen uns mit Problemen der algorithmischen Gruppentheorie und untersuchen dabei die Komplexität von komprimierten Versionen des Wortproblems und des Konjugationsproblems für endlich erzeugte Gruppen.
Das Wortproblem fragt für eine feste, endlich erzeugte Gruppe ob ein gegebenes Wort über der Erzeugermenge das neutrale Element der Gruppe repräsentiert. Wir betrachten das gegebene Wort jedoch in einer komprimierten Form, als Straight-line Program (SLP) und untersuchen die Komplexität dieses Problems, das wir \''komprimiertes Wortproblem\'' nennen. SLPs sind kontextfreie Grammatiken, die genau einen String erzeugen. Die Eingabegröße ist dabei stets die Größe des gegebenen SLPs. Eine Hauptmotivation ist dabei, dass für eine feste endlich erzeugte Gruppe das Wortproblem ihrer Automorphismengruppe durch eine Turingmaschine in Polynomialzeit auf das komprimierte Wortproblem der Gruppe selbst reduzierbar ist.
Wir untersuchen das komprimierte Wortproblem für die verbreiteten Gruppenerweiterungen HNN-Erweiterungen (amalgamierte Produkte und Graphprodukte) und können zeigen, dass sich Instanzen des komprimierten Wortproblems von einer Turingmaschine in Polynomialzeit auf Instanzen des komprimierten Wortproblems der Basisgruppe (respektive Basisgruppen und Knotengruppen) reduzieren lassen. Weiterhin zeigen wir, dass das komprimierte Wortproblem für endlich erzeugte nilpotente Gruppen von einer Turingmaschine in Polynomialzeit entscheidbar ist.
Wir betrachten außerdem eine komprimierte Variante des Konjugationsproblems. Das unkomprimierte Konjugationsproblem fragt für zwei gegebene Wörter über den Erzeugern einer festen endlich erzeugten Gruppe, ob sie in dieser Gruppe konjugiert sind. Beim komprimierten Konjugationsproblem besteht die Eingabe aus zwei SLPs und es wird gefragt, ob die beiden Wörter die von den SLPs erzeugt werden in der Gruppe konjugierte Elemente präsentieren. Wir konnten zeigen, dass sich das komprimierte Konjugationsproblem für Graphgruppen in Polynomialzeit entscheiden lässt.
Weiterhin haben wir das Wortproblem der äußeren Automorphismengruppen von Graphprodukten endlich erzeugter Gruppen untersucht. Durch den engen Zusammenhang des komprimierten Konjugationsproblems einer Gruppe mit dem Wortproblem der äußeren Automorphismengruppe konnten wir zeigen, dass sich das Wortproblem der äußeren Automorphismengruppe eines Graphprodukts von endlich erzeugten Gruppen durch eine Turingmaschine in Polynomialzeit auf Instanzen von simultanen komprimierten Konjugationsproblemen der Knotengruppen und Instanzen von komprimierten Wortproblemen der Knotengruppen reduzieren lässt.
Als Anwendung gelten obige Resultate auch für right-angled Coxetergruppen und Graphgruppen, da beide spezielle Graphprodukte sind. So folgt beispielsweise, dass das komprimierte Wortproblem einer right-angled Coxetergruppe in Polynomialzeit entscheidbar ist.
|
Page generated in 0.0835 seconds