Spelling suggestions: "subject:"decomposicão matricial"" "subject:"decomposicão patricial""
1 |
Solução geral da equação algébrica de Riccati Discreta utilizando estimador não quadrático e decomposição matricial aplicado no modelo em espaço de estado de um gerador eólico / General Solution of Discrete Riccati Algebra Equation using Non-Quadratic Estimator and Matrix Decomposition Applied to the State Space Model of an Eolic GeneratorQueiroz, Jonathan Araujo 08 March 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-23T21:14:46Z
No. of bitstreams: 1
JonathanQueiroz.pdf: 631286 bytes, checksum: 2cab2a7d6e496bf574ddef1f49a77440 (MD5) / Made available in DSpace on 2017-06-23T21:14:46Z (GMT). No. of bitstreams: 1
JonathanQueiroz.pdf: 631286 bytes, checksum: 2cab2a7d6e496bf574ddef1f49a77440 (MD5)
Previous issue date: 2016-03-08 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) / The discrete Riccati algebraic equation has played an increasingly important role in optimal control theory and adaptive ltering. For this reason, various techniques have been developed to solve the DARE, for example the approach based on self vectors or approaches related to invariant subspaces [1], which require mathematical rigor and precision. However, these approaches present a number of problems, among them the fact that they can not be implemented in real-time due to its high computational cost to estimate the solution of DARE in many systems, especially systems with higher order three. In order to overcomes this problem, we propose to solve the DARE using as an estimator based on the sum of potential error pairs. The estimator is similar to the Recursive Least Squares (RLS), but with a better performance in terms of convergence speed and estimation accuracy without a signi- cant increase in computational complexity. The estimator is called Recursive Least Non-Squares (RLNS). One other aspect in unraveling the general DARE is to ensure that DARE is numerically well conditioned. To perform the numerical conditioning of DARE, a matrix decomposition technique known as Moore-Penrose inverse or generalized inverse is used. The proposed method is evaluated in a multivariate system 6th order corresponding to the wind generator. The method is evaluated under the numerical stability point of view and speed of convergence. / A equação algébrica Riccati discreta (discrete algebraic Riccati equation (DARE)) tem desempenhado uma papel cada vez mais importante na teoria de controle ótimo. Por esse motivo, varias técnicas tem sido desenvolvidas para solucionar a DARE, por exemplo a abordagem baseada em auto vetores ou ainda abordagens relacionadas a subespaços invariantes, as quais requerem rigor e precisão matemáticas. No entanto, estas abordagens apresentam uma serie de problemas, dentre eles, o fato de não poderem ser implementadas em tempo real devido ao seu alto custo computacional para estimar a solução da DARE em diversos sistemas, sobretudo sistemas com ordem superior a três. Com o intuito de contorna este problema, propomos solucionar a DARE utilizando um estimador baseado na soma das potencias pares do erro. O estimador e similar ao Recursive least squares (RLS), mas com um desempenho melhor em termos de velocidade de convergência e precisão de estimativa, sem aumento significativo da complexidade computacional. O estimador é denominado Recursive Least Non-Squares (RLNS). Um outra aspecto para que possamos solucionar a DARE de forma geral, e garantir que a DARE seja numericamente bem condicionada. Para efetuar o condicionamento numérico da DARE, será utilizada uma técnica de decomposição matricial conhecida como inversa de Moore-Penrose ou inversa generalizada. A metodologia proposta e avaliada em um sistema multivariavel de 6th ordem correspondente ao gerador eólico.
|
Page generated in 0.0439 seconds