• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Realization of Decoy State Polarization Encoding Measurement-device-independent Quantum Key Distribution

Liao, Zhongfa 04 December 2013 (has links)
Quantum key distribution (QKD) allows two remote parties to generate secret keys for cryptographic purposes. Its security has been proven with some assumptions. However, practical realizations may not comply with all the assumptions, leading to various attacks. Founded on the observation that almost all attacks are on the detection part, measurement-device-independent QKD (MDI-QKD) was proposed to remove all such attacks. This thesis presents an implementation of the protocol. In our implementation, key bit information was encoded in the polarization states of weak coherent pulses at 1542 nm wavelength in optical fibers, and decoy state techniques were employed. We ensured stable polarization preparation and alignment and developed a QKD system over 10 km of standard Telecom fibers at 500 KHz repetition rate. Our work demonstrates the practicality of MDI-QKD protocol of removing all attacks, existing and yet to be discovered, on the detection part of a QKD system.
2

Experimental Realization of Decoy State Polarization Encoding Measurement-device-independent Quantum Key Distribution

Liao, Zhongfa 04 December 2013 (has links)
Quantum key distribution (QKD) allows two remote parties to generate secret keys for cryptographic purposes. Its security has been proven with some assumptions. However, practical realizations may not comply with all the assumptions, leading to various attacks. Founded on the observation that almost all attacks are on the detection part, measurement-device-independent QKD (MDI-QKD) was proposed to remove all such attacks. This thesis presents an implementation of the protocol. In our implementation, key bit information was encoded in the polarization states of weak coherent pulses at 1542 nm wavelength in optical fibers, and decoy state techniques were employed. We ensured stable polarization preparation and alignment and developed a QKD system over 10 km of standard Telecom fibers at 500 KHz repetition rate. Our work demonstrates the practicality of MDI-QKD protocol of removing all attacks, existing and yet to be discovered, on the detection part of a QKD system.

Page generated in 0.044 seconds