• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image generation through feature extraction and learning using a deep learning approach

Bruneel, Tibo January 2023 (has links)
With recent advancements, image generation has become more and more possible with the introduction of stronger generative artificial intelligence (AI) models. The idea and ability of generating non-existing images that highly resemble real world images is interesting for many use cases. Generated images could be used, for example, to augment, extend or replace real data sets for training AI models, therefore being capable of minimising costs on data collection and similar processes. Deep learning, a sub-field within the AI field has been on the forefront of such methodologies due to its nature of being able to capture and learn highly complex and feature-rich data. This work focuses on deep generative learning approaches within a forestry application, with the goal of generating tree log end images in order to enhance an AI model that uses such images. This approach would not only reduce costs of data collection for this model, but also many other information extraction models within the forestry field. This thesis study includes research on the state of the art within deep generative modelling and experiments using a full pipeline from a deep generative modelling stage to a log end recognition model. On top of this, a variant architecture and image sampling algorithm are proposed to add in this pipeline and evaluate its performance. The experiments and findings show that the applied generative model approaches show good feature learning, but lack the high-quality and realistic generation, resulting in more blurry results. The variant approach resulted in slightly better feature learning with a trade-off in generation quality. The proposed sampling algorithm proved to work well on a qualitative basis. The problems found in the generative models propagated further into the training of the recognition model, making the improvement of another AI model based on purely generated data impossible at this point in the research. The results of this research show that more work is needed on improving the application and generation quality to make it resemble real world data more, so that other models can be trained on artificial data. The variant approach does not improve much and its findings contribute to the field by proving its strengths and weaknesses, as with the proposed image sampling algorithm. At last this study provides a good starting point for research within this application, with many different directions and opportunities for future work.

Page generated in 0.0859 seconds