• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High aspect ratio transmission lines and filters

Jayatilaka, Himal Chandika 04 December 2009
There are a significant number of microwave applications, where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. have attracted much research interest. In order to meet these requirements, new technologies can be actively involved in fabrication of microwave components with improved characteristics. One such fabrication technology is called LIGA (a German acronym with an English translation of lithography, electroforming, and moulding) that allows fabrication of high aspect ratio (tall) structures, and only recently is receiving growing attention in microwave component fabrication.<p> The characteristics of high aspect ratio microstrip and coplanar waveguide (CPW) transmission lines are investigated in this thesis. Very low impedance high aspect ratio CPW transmission lines can be realized. A high aspect ratio microstrip folded half wavelength open loop resonator is introduced. Effective configurations for external and bypass gap coupling with open loop resonators are given. Filters with transmission zeros in the stopband, consisting of high aspect ratio single mode open loop resonators are presented to demonstrate the advantages of high aspect ratio structures in realizing lower external quality factors or tight coupling. The transmission zeros are created by novel coupling routings. Some of the filters are fabricated and the filter responses are measured to validate high aspect ratio coupling structures. High aspect ratio diplexers with increased channel isolation are also designed by appropriately combining filters with transmission zeros.<p> A wideband bandpass filter design method, based on the electromagnetic bandgap (EBG) concept is introduced in this thesis. The wideband filters are miniaturized as a result of using the EBG concept in design. An EBG based wideband filter consisting of unit cells that are realized by using high aspect ratio CPW stepped impedance resonators is also presented. The main advantage of this approach is that the high aspect ratio CPW structures make short unit cells practically realizable, resulting in compact filter structure.
2

High aspect ratio transmission lines and filters

Jayatilaka, Himal Chandika 04 December 2009 (has links)
There are a significant number of microwave applications, where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. have attracted much research interest. In order to meet these requirements, new technologies can be actively involved in fabrication of microwave components with improved characteristics. One such fabrication technology is called LIGA (a German acronym with an English translation of lithography, electroforming, and moulding) that allows fabrication of high aspect ratio (tall) structures, and only recently is receiving growing attention in microwave component fabrication.<p> The characteristics of high aspect ratio microstrip and coplanar waveguide (CPW) transmission lines are investigated in this thesis. Very low impedance high aspect ratio CPW transmission lines can be realized. A high aspect ratio microstrip folded half wavelength open loop resonator is introduced. Effective configurations for external and bypass gap coupling with open loop resonators are given. Filters with transmission zeros in the stopband, consisting of high aspect ratio single mode open loop resonators are presented to demonstrate the advantages of high aspect ratio structures in realizing lower external quality factors or tight coupling. The transmission zeros are created by novel coupling routings. Some of the filters are fabricated and the filter responses are measured to validate high aspect ratio coupling structures. High aspect ratio diplexers with increased channel isolation are also designed by appropriately combining filters with transmission zeros.<p> A wideband bandpass filter design method, based on the electromagnetic bandgap (EBG) concept is introduced in this thesis. The wideband filters are miniaturized as a result of using the EBG concept in design. An EBG based wideband filter consisting of unit cells that are realized by using high aspect ratio CPW stepped impedance resonators is also presented. The main advantage of this approach is that the high aspect ratio CPW structures make short unit cells practically realizable, resulting in compact filter structure.
3

LIGA-micromachined tight microwave couplers

Kachayev, Anton 19 December 2003
There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of todays RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called hybrid, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In todays practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures.
4

LIGA-micromachined tight microwave couplers

Kachayev, Anton 19 December 2003 (has links)
There are a significant number of microwave applications, including active antenna arrays, wireless communication systems, navigational applications, etc., where improvement of such qualities as manufacturing costs, size, weight, power consumption, etc. is still on the agenda of todays RF design. In order to meet these requirements, new technologies must be actively involved in fabrication of RF components with improved characteristics. One of such fabrication technologies is called LIGA, used before primarily in fluidics, photonics, bioengineering, and micromechanics, and only recently receiving growing attention in RF component fabrication. One of the RF components suffering limitations in performance due to limitations in fabrication capabilities is the compact single metal layer (SML) coupled-line 3-dB coupler, also called hybrid, required in some applications thanks to its ability to divide power equally and electrically isolate the output from the input. In todays practical edge-coupled SML coupler designs, the level of coupling is limited by the capabilities of the photolithographic process to print the coupled lines close enough for tight coupling and it is usually no tighter that 8 dB. A promising way to overcome this limitation is increasing the area of metallic interface of the coupled lines, thus increasing the mutual capacitance of the lines, and inherently the coupling between them. This should be preferably done with keeping the coupler compact with respect to the footprint area, which is attained by making taller conductors, i.e. employing the third dimension. In contrast with previously used RF component fabrication processes, LIGA is the technology that allows the designer to explore the third dimension and build tall conductors while being also able to use small features. When the two-dimensional edge-coupled SML couplers are extended into the three-dimensional structures, they rather become the side-coupled SML couplers. Tall-conductor coupled lines have been characterized in this work to reveal their dependence on their geometry and a 3-dB SML coupler with tall conductors has been developed and fabricated using LIGA at the Institute for Microstructure Technology (IMT), Karlsruhe, Germany. The simulation and measurement results demonstrate the potentially superior performance of LIGA couplers, and the promising capabilities of LIGA for fabrication of RF microstructures.
5

Exciting the Low Permittivity Dielectric Resonator Antenna Using Tall Microstrip Line Feeding Structure and Applications

2013 August 1900 (has links)
The development of wireless communications increases the challenges on antenna performance to improve the capability of the whole system. New fabrication technologies are emerging that not only can improve the performance of components but also provide more options for materials and geometries. One of the advanced technologies, referred to as deep X-ray lithography (XRL), can improve the performance of RF components while providing interesting opportunities for fabrication. Since this fabrication technology enables the objects of high aspect ratio (tall) structure with high accuracy, it offers RF/microwave components some unique advantages, such as higher coupling energy and compacted size. The research presented in that thesis investigates the properties of deep XRL fabricated tall microstrip transmission line and describes some important features such as characteristic impedance, attenuation, and electromagnetic field distribution. Furthermore, since most of traditional feeding structure cannot supply enough coupling energy to excite the low permittivity DRA element (εr≤10), three novel feeding schemes composed by tall microstrip line on exciting dielectric resonator antennas (DRA) with low permittivity are proposed and analyzed in this research. Both simulation and experimental measured results exhibit excellent performance. Additionally, a new simulation approach to realize Dolph-Chebyshev linear series-fed DRA arrays by using the advantages of tall microstrip line feeding structure is proposed. By using a novel T shape feeding scheme, the array exhibits wide band operation due to the low permittivity (εr=5) DRA elements and good radiation pattern due to the novel feeding structure. The tall metal transmission line feed structure and the polymer-based DRA elements could be fabricated in a common process by the deep XRL technology. This thesis firstly illustrates properties and knowledge for both DRA element and the tall transmission line. Then the three novel feeding schemes by using the tall transmission line on exciting the low permittivity DRA are proposed and one of the feeding structures, side coupling feeding, is analyzed through the simulation and experiments. Finally, the T shape feeding structure is applied into low permittivity linear DRA array design work. A novel method on designing the Dolph-Chebyshev array is proposed making the design work more efficient.

Page generated in 0.062 seconds