• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

OBJECT DETECTION IN DEEP LEARNING

Haoyu Shi (8100614) 10 December 2019 (has links)
<p>Through the computing advance and GPU (Graphics Processing Unit) availability for math calculation, the deep learning field becomes more popular and prevalent. Object detection with deep learning, which is the part of image processing, plays an important role in automatic vehicle drive and computer vision. Object detection includes object localization and object classification. Object localization involves that the computer looks through the image and gives the correct coordinates to localize the object. Object classification is that the computer classification targets into different categories. The traditional image object detection pipeline idea is from Fast/Faster R-CNN [32] [58]. The region proposal network generates the contained objects areas and put them into classifier. The first step is the object localization while the second step is the object classification. The time cost for this pipeline function is not efficient. Aiming to address this problem, You Only Look Once (YOLO) [4] network is born. YOLO is the single neural network end-to-end pipeline with the image processing speed being 45 frames per second in real time for network prediction. In this thesis, the convolution neural networks are introduced, including the state of art convolutional neural networks in recently years. YOLO implementation details are illustrated step by step. We adopt the YOLO network for our applications since the YOLO network has the faster convergence rate in training and provides high accuracy and it is the end to end architecture, which makes networks easy to optimize and train. </p>
2

Semantic Segmentation Using Deep Learning Neural Architectures

Sarpangala, Kishan January 2019 (has links)
No description available.
3

Segmentace cévního řečiště ve snímcích sítnice metodami hlubokého učení / Blood vessel segmentation in retinal images using deep learning approaches

Serečunová, Stanislava January 2018 (has links)
This diploma thesis deals with the application of deep neural networks with focus on image segmentation. The theoretical part contains a description of deep neural networks and a summary of widely used convolutional architectures for segmentation of objects from the image. Practical part of the work was devoted to testing of an existing network architectures. For this purpose, an open-source software library Tensorflow, implemented in Python programming language, was used. A frequent problem incorporating the use of convolutional neural networks is the requirement on large amount of input data. In order to overcome this obstacle a new data set, consisting of a combination of five freely available databases was created. The selected U-net network architecture was tested by first modification of the newly created data set. Based on the test results, the chosen network architecture has been modified. By these means a new network has been created achieving better performance in comparison to the original network. The modified architecture is then trained on a newly created data set, that contains images of different types taken with various fundus cameras. As a result, the trained network is more robust and allows segmentation of retina blood vessels from images with different parameters. The modified architecture was tested on the STARE, CHASE, and HRF databases. Results were compared with published segmentation methods from literature, which are based on convolutional neural networks, as well as classical segmentation methods. The created network shows a high success rate of retina blood vessels segmentation comparable to state-of-the-art methods.
4

Odhad kanálu v OFDM systémech pomocí deep learning metod / Utilization of deep learning for channel estimation in OFDM systems

Hubík, Daniel January 2019 (has links)
This paper describes a wireless communication model based on IEEE 802.11n. Typical methods for channel equalisation and estimation are described, such as the least squares method and the minimum mean square error method. Equalization based on deep learning was used as well. Coded and uncoded bit error rate was used as a performance identifier. Experiments with topology of the neural network has been performed. Programming languages such as MATLAB and Python were used in this work.

Page generated in 0.279 seconds