Spelling suggestions: "subject:"peer ehicle collisions (DVC)"" "subject:"peer ehicle kollisions (DVC)""
1 |
DDM: Study of deer detection and movement using deep learning techniquesSiddique, Md Jawad 01 December 2021 (has links)
Deer Vehicle Collisions (DVCs) are a global problem that is not only resulting in seriousinjuries to humans but also results in loss of human and deer lives. Deer are more active and less attentive during the mating and hunting seasons. Roadside deer activity such as feeding and strolling along the roadside has a significant correlation with DVCs. To mitigate DVCs, several strategies were used that include vegetation management, fences, underpasses and overpasses, population reduction, warning signs and animal detection systems (ADS). These strategies vary in their efficacy. These strategies may help to reduce DVCs. However, they are not always easily feasible due to false alarms, high cost, unsuitable terrain, land ownership, and other factors. Thus, DVCs are increasing due to the increase in number of vehicles and the absence of intelligent highway safety and alert systems. Detecting deer in real-time on our roads is a challenging problem. Thus, this research work proposed a deer detection and movement DDM technique to automate DVCs mitigation system. The DDM combines computer vision, artificial intelligent methods with deep learning techniques. DDM includes two main deep learning algorithms 1)onestage deep learning algorithm based on Yolov5 that generates a detection model(DM) to detect deer and 2) deep learning algorithm developed by python toolkit DeepLabCut to generate movement model(MM) for detecting the movement of the deer. The proposed method can detect deer with 99.7% precision and succeeds to ascertain if the deer is moving or static with an inference speed of 0.29s. The proposed method can detect deer with 99.7% precision and using DeepLabCut toolkit on the detected deer we can ascertain if the deer is moving or static with an inference speed of 0.29s.
|
Page generated in 0.0938 seconds