• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supported Perovskite-type Oxides: Establishing a Foundation for CO<sub>2</sub> Conversion through Reverse Water-gas Shift Chemical Looping

Hare, Bryan J. 12 March 2018 (has links)
Perovskite-type oxides show irrefutable potential for feasible thermochemical solar-driven CO2 conversion. These materials exhibit the exact characteristics required by the low temperature reverse water-gas shift chemical looping process. These properties include structural endurance and high oxygen redox capacity, which results in the formation of numerous oxygen vacancies, or active sites for CO2 conversion. A major drawback is the decrease in oxygen self-diffusion with increasing perovskite particle size. In this study, the La0.75Sr0.25FeO3 (LSF) perovskite oxide was combined with various supports including popular redox materials CeO2 and ZrO2 along with more abundant alternatives such as Al2O3, SiO2, and TiO2, in view of its potential application at industrial scale. Supporting LSF on SiO2 by 25% mass resulted in the largest increase of 150% in CO yields after reduction at 600 °C. This result was a repercussion of significantly reduced perovskite particle size confirmed by SEM/TEM imaging and Scherrer analyses of XRD patterns. Minor secondary phases were observed during the solid-state reactions at the interface of SiO2 and TiO2. Density functional theory-based calculations, coupled with experiments, revealed oxygen vacancy formation only on the perovskite phase at these low temperatures of 600 °C. The role of each metal oxide support towards suppressing or enhancing the CO2 conversion has been elucidated. Through utilization of SiO2, the reverse water-gas shift chemical looping process using perovskite-based composites was significantly improved.
2

FIRST PRINCIPLES MODELLING OF POINT DEFECT DISORDER AND DIFFUSION IN ThO2

Maniesha Kaur Salaken Singh (15348241) 26 April 2023 (has links)
<p> </p> <ol> <li>This dissertation investigates the thermodynamics and transport of vacancies and interstitials of oxygen (O) and thorium (Th) in thorium dioxide (ThO<sub>2</sub>) with varying charge states from neutral to maximum, with respect to temperature and oxygen pressure. The study also explores the impact of varying fractions of uranium (U) as a cation (<em>y</em>) on the defect disorder in mixed oxide fuels (Th<sub>1-<em>y</em></sub>U<sub><em>y</em></sub>O<sub>2</sub>). Understanding the properties of point defects in these oxides lays a strong foundation, as defects influence the properties of bulk materials, such as thermal transport. To accomplish the stated objectives of this dissertation, the research is structured into three sections that employ first principles density functional theory (DFT) and phonon calculations. The first section focuses on the structure, internal energy of formation, and vibrational entropy of point defects in ThO<sub>2</sub>. The results demonstrate that defect energetics increase with an increase in defect charge for O interstitials and Th vacancies, while the opposite is true for O vacancies and Th interstitials. The lowest internal energy of formation shifts from O vacancies of charge 2+ to O interstitials and Th vacancies at various temperature ranges of 0 to 600 K, 600 to 1300 K, and 1300 to 2000 K. The second section develops a model to calculate the defect disorder and off-stoichiometry in ThO<sub>2±<em>x</em></sub> and Th<sub>1-<em>y</em></sub>U<sub><em>y</em></sub>O<sub>2±<em>x</em></sub>. The model shows that ThO<sub>2</sub> exists mainly as a hypo-stoichiometric oxide between 1200 K to 2900 K for oxygen pressures ranging from 10<sup>-30</sup> to 10 atm, with O defects dominating this off-stoichiometric regime. The addition of U increases the thermodynamic window over which Th<sub>1-<em>y</em></sub>U<sub><em>y</em></sub>O2 is hyper-stoichiometric, with O vacancies dominating in the hypo-stoichiometric regime, and cation vacancies and O interstitials dominating at low and high temperatures, respectively. Specifically, at low U content and low temperatures, U vacancies dominate hyper-stoichiometry, while at high U content and low temperatures, Th vacancies are dominant. This research facilitates the comprehension of the intricate changes in structural and defect equilibria that take place during nuclear fuel irradiation, where the fuel is not in a stoichiometric condition. The third section of the dissertation investigates migration barriers and diffusivities of defects and of O and Th in ThO<sub>2</sub>. Results indicate that the migration energy of a point defect is dependent on its charge state. The average diffusivity of O vacancies exceeds that of O interstitials, while the similar is true for Th vacancies and Th interstitials above 1650 K. The self-diffusion coefficient of O and Th increases with temperature and is influenced by oxygen pressure, showing a close agreement with experimental and molecular-dynamics-based computational data. At 1500 K, the self-diffusivity of O and Th in ThO2 is 7.47 x 10<sup>-16</sup> m<sup>2</sup>s<sup>-1</sup> and 4.48 x 10<sup>-23</sup> m<sup>2</sup>s<sup>-1</sup> , respectively, while at 2500 K, the values increase to 1.06 x 10<sup>-12</sup> m<sup>2</sup>s<sup>-1</sup>  and 2.28 x 10<sup>-17</sup> m<sup>2</sup>s<sup>-1</sup> , respectively. The chemical diffusion coefficients of defects decrease initially and then plateau as the hypo-stoichiometry in the oxide increases. These findings serve as a fundamental framework for understanding the diffusion-controlled processes of defects, which affect the radiation tolerance and microstructural evolution of ThO<sub>2</sub> as a nuclear fuel.  </li> </ol>

Page generated in 0.1258 seconds