• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of Antibiotic GE37468A from Pseudonocardia Symbionts of Trachymyrmex Septentrionalis Ants

Rao, Krithika 01 January 2019 (has links)
In response to the growing rates of antibiotic resistance in human bacterial pathogens, this study explores the natural products involved in the defensive symbiosis between actinobacteria and fungus-growing ants to uncover new potential antibiotics. This study also seeks to understand the function of natural antibiotics in their ecological contexts, especially those involved in defensive symbioses. Defensive symbiosis can be a beneficial platform for discovering useful antibiotics, because antibiotics in these relationships must be able to selectively inhibit enemies without harming hosts, and are therefore likely more specific and less toxic. Pseudonocardia sp. associated with Trachymyrmex septentrionalis ants demonstrated antibiotic activity against several gram-positive bacteria. Therefore, the natural products from this strain were extracted and purified through activity-guided fractionation. Using mass spectrometry, the structure of the active compound was elucidated as GE37468A, an antibiotic that has been previously identified from Streptomyces sp. ATCC 55365 from Italy. This compound had never before been characterized in a defensive symbiosis, which demonstrates the use of the molecule in a new context. Antibiotic GE37468A is a thiopeptide, which is a group of antibiotics that has previously demonstrated strong activity against many gram-positive bacteria, including bacterial human pathogens. Due to its potency against dangerous bacteria and its likely low toxicity, this antibiotic could therefore hold potential pharmacological uses.

Page generated in 0.0487 seconds