• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accumulative roll bonding of multilayered aluminium alloys

Al-Buhamad, Oday Hatim, Materials Science & Engineering, Faculty of Science, UNSW January 2009 (has links)
Multilayered aluminium alloy composites were produced by accumulative roll bonding (ARB) to very high strain to generate sheet materials consisting of either 32 or 64 alternating layers of Al and Al-0.3w.%Sc alloy. Based on the starting heat treatment condition of the Al(Sc) alloy and the roll bonding temperature, several different Al/Al(Sc) combinations were produced: (i) SSSS-ARB (Al(Sc) in the supersaturated condition; Tdef = 200 ???C; 32 layers); (ii) Aged-ARB (Al(Sc) in the artificially aged condition; Tdef = 200 ???C; 32 layers), and (iii) SSSS-ARB-HT (Al(Sc) in the SSSS condition; Tdef = 350 ???C; 64 layers). Regardless of the roll bonding conditions, Al(Sc) in the form of a dispersion of ultrafine Al3Sc particles strongly impedes structural changes during thermomechanical processing whereas Al readily undergoes extensive dynamic and static restoration. The major aim of the thesis is to understand the effect of initial microstructure and processing conditions on microstructural development in these multilayered Al/Al(Sc) composites. The microstructures were investigated mainly by backscatter electron (BSE) and ion channeling contrast (ICC) imaging in the DualBeam Platform and transmission electron microscopy (TEM) whereas the crystallographic nature of the microstructures were investigated by electron backscatter diffraction (EBSD) and the various diffraction techniques available in the TEM. The mechanical properties of the materials were investigated by hardness and tensile testing. The deformation microstructure and texture of these two alloy combinations were strongly influenced by both the initial heat treatment condition of the Al(Sc) alloy whereby large-scale shear bands are generated during rolling when a dispersion of fine Al3Sc particles is present in the Al(Sc) layers. The deformation mechanism of both SSSS-ARB and Aged-ARB was strongly controlled by the relative hardening behaviour of adjacent layers. In Aged-ARB, a higher magnitude of in-plane shear stress, exceeding the flow stress of Al(Sc), was operative at the interfaces between layers; this was shown to cause the shear banding in this material. All materials were annealed for up to 6h at 350 ??C. This extended annealing generated alternating layers of coarse grains (Al layers) and a recovered substructure (Al(Sc) layers) with the substantial waviness of the layers in both Aged-ARB and SSSS-ARB-HT being inherited from the as-deformed material. While the Al(Sc) layers remain unrecrystallized in all materials due to particle pinning effects, the Al layers underwent continuous and discontinuous recrystallization after low and high temperature roll bonding, respectively. Shear banding in Aged-ARB also resulted in a reduction in intensity of the rolling texture components and had a randomizing effect on the recrystallization texture of the Al layers. The Al/A(Sc) multilayered composites were found to conform to the classic inverse strength/ductility relationship and no significant improvement in ductility (for a given strength) was evident. The barriers to achieving an excellent combination of ductility and strength (i.e. toughness) in these materials were identified to be delamination of the layers, which can be largely reduced (or eliminated) by careful control of starting materials (heat treatment condition and thickness) as well as the processing parameters during ARB.

Page generated in 0.1134 seconds