• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid additive manufacture and deformation processing for large scale near-net shape manufacture of titanium aerospace components

Donoghue, Jack January 2017 (has links)
The titanium alloy Ti-6Al-4V has been favoured by the aerospace industry for the past several decades due to its good combination of specific mechanical properties, alongside corrosion and fatigue resistance. Titanium alloys are naturally suited to the near net shape processing technique of Additive Manufacture (AM) due to both the inherent high cost of the raw materials, and the difficulties associated with machining the alloys. Unfortunately, the combination of Ti-6Al-4V with AM has been found to lead to undesirable microstructures with respect to large columnar prior β grains being found to grow potentially across the entire height of builds. This microstructure has been shown to lead to property anisotropy and poor fatigue resistance. However, it has recently been found that the integration of an additional process step that lightly deforms the deposited material between added layers leads to the refinement of this undesirable microstructure. This work characterises the effect that two different deformation processing techniques have on two different additive manufacturing processes; the effect of peening on a laser-powder AM technique, and the effect of rolling on an electric arc-wire AM technique. In both cases far more randomly textured prior β grains were found with an average grain size of > 100 µm rather than mm long columnar grains with a common growth direction formed in the non-deformed builds. The refined β microstructure was found to lead to a reduction in texture of the room temperature alpha phase. The low stains involved (>10%) indicated that the refined grain structures did not form by traditional recrystallisation mechanisms. In-situ EBSD measurements at temperatures spanning the alpha → β phase transformation have been used to observe the growth of new β orientations from crystallographic twins in the deformed microstructure that may explain the origin of the refined grains. New β orientations were observed to grow from twinned alpha colonies and from between alpha laths, where the new β is found to grow sharing a twinning relationship with the residual β. Simulation of both of the individual processing steps under laboratory conditions has been found to successfully replicate the refinement observed in process. Orientation analysis suggests that twinning of the residual β could lead to the texture observed in the refined grains. It is therefore suggested that the refined grains are formed from β twinned regions in the deformed material growing under the alpha → β phase transformation, as the material is heated by the next added layer during AM.
2

Particulate morphology and deformation characteristics in modulation assisted machining

Indrani Biswas (10716567) 06 May 2021 (has links)
Studies of mechanics and deformation in metal cutting operations have been largely limited to steady-state processes assuming constant forces and shear strain of cutting. However, ‘transient’ or varying deformation conditions are frequently encountered in manufacturing processes, when one or more processing parameters vary during the progress of the cut. Such conditions impose a lower overall strain on the resulting chip and affect the cutting forces and energies. In this study, the transient deformation characteristics are studied through the analysis of chip attributes (hardness and shape change) in a periodic cutting technique, Modulation Assisted Machining (MAM). In MAM, a sinusoidal modulation is superimposed on the tool feed, resulting in periodic engagement between the tool and workpiece. Deformation is confined to a specific volume of material and is also transient due to varying local conditions, manifesting an inhomogeneous and lower shear strain compared to steady-state cutting. A wide variety of deformation conditions from near steady-state to completely transient was achieved through the control of modulation frequency, which determines the contact length in each cutting cycle. Particles produced at lower frequencies exhibit increased hardness, consistent with the deformation more approaching steady state. Micro-indentation tests performed on each particle tracked the local variations in hardness along the length of cut, which agreed well with the non-uniform shape change observed on the cross-section of the particles. Microstructural examination of the chips made with and without modulation helped further describe the different deformation modes acting under periodic and continuous cutting conditions. MAM is also a valuable technique for metal powder processing. Individual chip particles are produced during each modulation cycle with controllable shape and size, and composition identical to that of the workpiece. Advantages of the process include a significant reduction in the specific energy of production, zero compositional variance and a tight distribution of particle sizes compared to atomization. Implications of scaling up the process for large-scale production and the possible applications of the metal particles made with MAM are highlighted.

Page generated in 0.1686 seconds