Spelling suggestions: "subject:"deformation."" "subject:"eformation.""
201 |
The deformation of microscopic gel particlesAndrei, Diana Cristina January 1996 (has links)
No description available.
|
202 |
The visible consequences of rising convective streams in the EarthAmiri Khanmakani, Hosein January 1993 (has links)
No description available.
|
203 |
Propagation, reflection and transmission of plane waves in pre-stressed elastic solidsHussain, Wasiq January 1999 (has links)
No description available.
|
204 |
A Probabilistic Deformation Demand Model and Fragility Estimates for Asymmetric Offshore Jacket PlatformsFallon, Michael Brooks 14 March 2013 (has links)
Interest in evaluating the performance and safety of offshore oil and gas platforms has been expanding due to the growing world energy supply and recent offshore catastrophes. In order to accurately assess the reliability of an offshore platform, all relevant uncertainties must be properly accounted for. This necessitates the development of a probabilistic demand model that accounts for the relevant uncertainties and model errors.
In this study, a probabilistic demand model is developed to assess the deformation demand on asymmetric offshore jacket platforms subject to wave and current loadings. The probabilistic model is constructed by adding correction terms and a model error to an existing deterministic deformation demand model. The correction terms are developed to capture the bias inherent in the deterministic model. The model error is developed to capture the accuracy of the model. The correction terms and model errors are estimated through a Bayesian approach using simulation data obtained from detailed dynamic analyses of a set of representative asymmetric offshore platform configurations. The proposed demand model provides accurate and unbiased estimates of the deformation demand on offshore jacket platforms.
The developed probabilistic demand model is then used to assess the reliability of a typical offshore platform considering serviceability and ultimate performance levels. In addition, a sensitivity analysis is conducted to assess the effect of key parameters on the results of the analyses. The proposed demand model can be used to assess the reliability of different design options and for the reliability-based optimal design of offshore jacket platforms.
|
205 |
Effects of rubber particle cavitation on the yielding of high impact polystyreneYang, Hsiao-Hsi January 1997 (has links)
A pre-damage method was developed to determine whether rubber particle cavitation is responsible for craze initiation, or vice versa. Tensile tests were carried out on pre-strained high impact polystyrene (HIPS) specimens which had been annealed above 100 °C to heal any crazes formed in the PS matrix during pre-straining. Moderate prestraining followed by annealing was found to reduce the yield stress of the HIPS, but not the post-yield flow stress. These observations are related to cavitation for the rubber particles, which results in a fibrillar structure within the rubber membranes of a typical "Salami' particle. The reduction in yield stress provides evidence for primary chain scission in the rubber phase during yielding: on subsequent loading of the annealed tensile bar, the rubber particle exhibits a reduced resistance to cavitation because less energy is required to form a void. It was found in the follow-up pre-straining tests on HIPS blends and at different testing temperatures that the critical pre-strain is a function of rubber content and temperature. Comparable effects are seen in creep tests. Small levels of pre-straining have little effect if the specimen is not annealed before reloading. The TEM work also confirms rubber particle cavitation as a rate-determining step in the deformation of HIPS and supports the view that cavitation precedes crazing. A modified cavitation model is proposed to account for the deformation of a cavitated particle under tension. The predictions of this model agree with the experiments that the resistance of the particle is weakened by cavitation and crazes could initiate at the lower tension. The technique of pre-straining and annealing specimens, before submitting them to conventional tensile tests, provides valuable insight into the mechanisms and kinetics of toughening.
|
206 |
Investigating the Tectonic Significance of Spiral Garnets from the Betic-Rif Arc of Southern Spain and Northern Morocco Using Sm-Nd Garnet Geochronology:Farrell, Thomas January 2019 (has links)
Thesis advisor: Ethan F. Baxter / Spiral garnets are well-documented metamorphic microstructures that have been observed in orogens throughout the world. The preferred orientation of spiral garnet axes has been proposed (Bell and Johnson, 1989) to record and preserve information about the timing, rate, and orientation of the tectonic-scale processes. Using the model of Be Spiral garnets are well-documented metamorphic microstructures that have been observed in orogens throughout the world. The preferred orientation of spiral garnet axes has been proposed (Bell and Johnson, 1989) to record and preserve information about the timing, rate, and orientation of the tectonic-scale processes. Using the model of Bell and Johnson (1989), Aerden et al. (2013) proposed a link between the preferred orientation of spiral garnets and changes in relative plate motion between Iberia and Africa. The goal of this thesis is to this relationship by absolutely dating, eight samples from the Betic-Rif arc with measurable spiral axis orientations were chosen for Sm-Nd garnet geochronology. Chapter one is a detailed literature review of prior work on the formation and interpretation of spiral garnets. In chapter two we present 11 bulk Sm-Nd garnet ages from eight samples, these ages range from 35.6 ± 2.8 to 13.62 ± 0.69 Ma. The results from the obtained bulk garnet ages reveal a more complex relationship between FIA orientations and plate motion that originally hypothesized in Aerden et al. (2013). Large-scale rigid block rotations that postdate garnet growth may have influenced the current orientation of FIA from the western Betic-Rif. In chapter three, zoned geochronology was conducted on a single sample from the Nevado-Filabride Complex. This study revealed spiral garnet formation occurring on a rapid timescale, just 〖0.45〗_(-0.32)^(+0.51) Myr. While other zoned garnet studies have shown similar rapid growth in subduction zone setting (Dragovic et al., 2012), this is the first such documentation of such rapid growth from a garnet hosting spiral inclusion trails in a regional metamorphic setting. We calculated strain rates considering different genetic models for the spiral inclusion trails either by garnet rotation in simple shear, or by episodic overgrowth of suborthogonal crenulation cleavages due to switching stress axes. In both cases a similar fast strain rate of ca. 10-13 s-1 was obtained, which is an order of magnitude faster than typical regional strain rates and faster than previous spiral garnet studies regardless of the method used to calculate strain-rate. / Thesis (MS) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
207 |
Body Deformation Correction for SPECT ImagingGu, Songxiang 09 July 2009 (has links)
"Single Photon Emission Computed Tomography (SPECT) is a medical imaging modality that allows us to visualize functional information about a patient's specific organ or body systems. During 20 minute scan, patients may move. Such motion will cause misalignment in the reconstruction, degrade the quality of 3D images and potentially lead to errors in diagnosis. Body bend and twist are types of patient motion that may occur during SPECT imaging and which has been generally ignored in SPECT motion correction strategies. To correct for these types of motion we propose a deformation model and its inclusion within an iterative reconstruction algorithm. One simulation and three experiments were conducted to investigate the applicability of our model. The simulation employed simulated projections of the MCAT phantom formed using an analytical projector which includes attenuation and distance-dependent resolution to investigate applications of our model in reconstruction. We demonstrate in the simulation studies that twist and bend can significantly degrade SPECT image quality visually. Our correction strategy is shown to be able to greatly diminish the degradation seen in the slices, provided the parameters are estimated accurately. To verify the correctness of our deformation model, we design the first experiment. In this experiment, the return of the post-motion-compensation locations of markers on the body-surface of a volunteer to approximate their original coordinates is used to examine our method of estimating the parameters of our model and the parameters' use in undoing deformation. Then, we design an MRI based experiment to validate our deformation model without any reconstruction. We use the surface marker motion to alter an MRI body volume to compensate the deformation the volunteer undergoes during data acquisition, and compare the motion-compensated volume with the motionless volume. Finally, an experiment with SPECT acquisitions and modified MLEM algorithm is designed to show the contribution of our deformation correction for clinical SPECT imaging. We view this work as a first step towards being able to estimate and correct patient deformation based on information obtained from marker tracking data."
|
208 |
Geochronology and Geochemistry of Calcite-Filled Fractures, Southern Ontario: Insight Into Cretaceous DeformationSpalding, Jennifer January 2018 (has links)
The St. Lawrence Platform is located along the northern shoreline of Lake Ontario, currently in an intra-cratonic setting exposing relatively flat-lying middle Ordovician sedimentary strata. The purpose of this study is to gain insight on recent brittle deformation events that have deformed the bedrock. Based on structural field observations, broadly trending E-W extensional joints are the youngest stress recorded in the bedrock. These joints are partially filled and sealed with calcite mineralization and were strategically sampled to gain insight on the source and timing of fluid flow. Trace element geochemistry and stable isotope (δ18O and δ13C) analysis on calcite mineralization indicate that their compositions are analogous to the host rock, thus, fluids originate from connate fluids that were released from pore space during deformation. In addition, U-Pb geochronology via LA-ICP-MS methods yield a model age of 101 ± 6 Ma (MSWD: 2.3). The date of calcite crystallization is contemporaneous with the establishment of North America’s modern compressive stress field, and is linked to a Cretaceous tectonic plate reorganization event that was global in scale. This study demonstrates that calcite veins can serve as a tool to date brittle deformation in limestone, which could have direct applications in hydrocarbon exploration, paleohydrology, and the consideration for locating sites to host deep geological repositories.
|
209 |
Interplay between creep/aseismic deformation, earthquakes and fluids in fault zones, with a special emphasis on the North Anatolian fault zone, Turkey / Interactions entre déformations sismiques et asismiques, séismes et fluides dans les zones de faille. Application à la faille Nord Anatolienne (TurquieKaduri, Maor 18 December 2017 (has links)
Le fluage asismique des failles dans la croûte supérieure est un mécanisme de déformation crucial le long des limites des plaques tectoniques. Il contribue au bilan énergétique du cycle sismique, retardant ou déclenchant le développement des grands tremblements de terre. Un enjeu majeur est de comprendre quels sont les paramètres qui contrôlent la partition entre déformations sismiques et asismiques dans les failles actives tels que la lithologie ou les transformations sous contrainte à toutes échelles et comment cette partition évolue dans le temps. Des observations géologiques réalisées dans ce travail le long de la Faille Nord Anatolienne en Turquie, combinées à des analyses de laboratoire et des traitements d’images, permettent de donner un éclairage nouveau sur ces mécanismes de fluage. En plus, les relations entre déformation finie et transfert de matière ont été utilisées en parallèle avec des données géodésiques pour comprendre l’évolution de ces mécanismes de fluage depuis le début du déplacement de cette faille.Une corrélation claire est observée entre fluage superficiel et composition des gouges de la faille : les segments sismiques sont composés de calcaires massifs sans gouge de faille argileuse alors que les segments asismiques qui fluent comprennent des gouges argileuses résultant de la transformation progressive de roches volcaniques. Dans ces zones de fluage une schistosité espacée se développe durant le premier stade de la déformation conduisant à un litage tectonique de type foliation, au début oblique puis subparallèle à la faille, qui accommode une part de la déformation asismique par dissolution cristallisation sous contrainte. En conséquence, les minéraux solubles comme le quartz et les feldspaths sont dissous conduisant à la concentration passive des phyllosilicates dans les gouges de failles qui sont ensuite altérés par des circulations de fluides produisant des minéraux argileux à faible friction. Dans le même temps les zones endommagées autour de la gouge sont fracturées et les fractures scellées par des carbonates. Ces transformations minérales et structurales amollissent les gouges de failles et durcissent les zones endommagées conduisant à une évolution de la déformation sismique – asismique de diffuse à localisée.Des modèles qui intègrent déformation finie et transfert de matière révèlent deux échelles d’espace de la déformation qui correspondent à une alternance de deux types de bandes de cisaillement avec une schistosité soit oblique soit subparallèle à la faille. Diverses valeurs de la déformation finie ont été estimées pour calculer la proportion de déplacement asismique par rapport au déplacement total sismique et asismique de la faille (80 km). Cette proportion qui dépend de la lithologie de la zone de faille varie de 0.002% dans les zones sismiques calcaires et évolue dans le temps dans les zones asismiques des roches volcaniques de 59% pour les stades précoces à 18% pour les stages récents. / Aseismic fault creep in the upper crust is a key deformation process along tectonic plate boundaries. It contributes to the energy budget during the seismic cycle, delaying or triggering the occurrence of large earthquakes. One of the greatest challenges is to understand which parameters control the partition between seismic and aseismic deformation in active faults, such as lithology or stress-driven transformations at all scales and how this partition evolves with time. Geological observations along the North Anatolian Fault in Turkey combined with laboratory analyses and imaging techniques performed in the present study shed new light on these mechanisms of fault creep. Moreover, the relationship between finite strain and mass change was compared with geodesy data in order to understand the evolution of these creep mechanisms since the beginning of this fault displacement.A clear correlation is shown between shallow creep and near-surface fault gouge composition: seismic segments of the fault are mostly composed of massive limestone without clay gouges, whereas aseismic creeping segments comprising clay gouges result from a progressive change of volcanic rocks. Within these creeping zones, anastomosing cleavage develops during the first stage of deformation, leading to tectonic layering that forms a foliation, oblique at first and then sub-parallel to the fault. This foliation accommodates part of the aseismic creep by pressure solution. Consequently, the soluble minerals such as quartz and feldspars are dissolved, leading to the passive concentration of phyllosilicates in the gouges where alteration transformations by fluid flow produce low friction clay minerals. At the same time damage zones are fractured and fractures are sealed by carbonates. As a result, these mineralogical and structural transformations weaken the gouge and strengthen the damage zone leading to the change from diffuse to localized seismic-aseismic zones.Models integrating finite strain and mass change reveal two spatial scales of strain that correspond to the alternation of two types of shear bands, with cleavages oriented either oblique or sub-parallel to the fault zone. Various total strain values were estimated in order to calculate the aseismic part of the total 80 km displacement along the locked and creeping sections. The aseismic strain fraction of the total tectonic strain in the fault depends on the fault lithology and varies from 0.002% in seismic zones made of limestone and evolves with time in the creeping zones made of volcanic rocks from 59% in the early stages of fault development to 18% in the recent times.
|
210 |
Dislocation Dynamics Simulations of Plasticity in Cu Thin FilmsWu, Han 08 1900 (has links)
Strong size effects in plastic deformation of thin films have been experimentally observed, indicating non-traditional deformation mechanisms. These observations require improved understanding of the behavior of dislocation in small size materials, as they are the primary plastic deformation carrier. Dislocation dynamics (DD) is a computational method that is capable of directly simulating the motion and interaction of dislocations in crystalline materials. This provides a convenient approach to study micro plasticity in thin films. While two-dimensional dislocation dynamics simulation in thin film proved that the size effect fits Hall-Petch equation very well, there are issues related to three-dimensional size effects. In this work, three-dimensional dislocation dynamics simulations are used to study model cooper thin film deformation. Grain boundary is modeled as impenetrable obstacle to dislocation motion in this work. Both tension and cyclic loadings are applied and a wide range of size and geometry of thin films are studied. The results not only compare well with experimentally observed size effects on thin film strength, but also provide many details on dislocation processes in thin films, which could greatly help formulate new mechanisms of dislocation-based plasticity.
|
Page generated in 0.1198 seconds