• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 2
  • 1
  • Tagged with
  • 34
  • 15
  • 14
  • 13
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Estimation of source fault parameters from tsunami deposits by inverse model using deep neural network / 津波堆積物のDNN逆解析による波源断層パラメーター推定

Iijima, Yasutaka 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25126号 / 理博第5033号 / 新制||理||1718(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 成瀬 元, 教授 田上 高広, 教授 生形 貴男 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
32

Modeling flood-induced processes causing Russell lupin mortality in the braided Ahuriri River, New Zealand

Javernick, Luke Anthony January 2013 (has links)
The braided rivers and floodplains in the Upper Waitaki Basin (UWB) of the South Island of New Zealand are critical habitats for endangered and threatened fauna such as the black stilt. However, this habitat has degraded due to introduced predators, hydropower operations, and invasive weeds including Russell lupins. While conservation efforts have been made to restore these habitats, flood events may provide a natural mechanism for removal of invasive vegetation and re-creation of natural floodplain habitats. However, little is understood about the hydraulic effects of floods on vegetation and potential mortality in these dynamic systems. Therefore, this thesis analyzed the flood-induced processes that cause lupin mortality in a reach of the Ahuriri River in the UWB, and simulated various sized flood events to assess how and where these processes occurred. To determine the processes that cause lupin mortality, post-flood observations were utilized to develop the hypothesis that flood-induced drag, erosion, sediment deposition, inundation, and trauma were responsible. Field and laboratory experiments were conducted to evaluate and quantify these individual processes, and results showed that drag, erosion, sediment deposition and inundation could cause lupin mortality. Utilizing these mortality processes, mortality thresholds of velocity, water depth, inundation duration, and morphologic changes were estimated through data analysis and evaluation of various empirical relationships. Delft3D was the numerical model used to simulate 2-dimensional flood hydraulics in the study-reach and was calibrated in three stages for hydraulics, vegetation, and morphology. Hydraulic calibration was achieved using the study-reach topography captured by Structure-from-Motion (SfM) and various hydraulic data (depth, velocity, and water extent from aerial photographs). Vegetation inclusion in Delft3D was possible utilizing a function called ‘trachytopes’, which represented vegetation roughness and flow resistance and was calibrated utilizing data from a lupin-altered flow conveyance experiment. Morphologic calibration was achieved by simulating an observed near-mean annual flood event (209 m3 s-1) and adjusting the model parameters until the simulated morphologic changes best represented the observed morphologic changes captured by pre- and post-flood SfM digital elevation models. Calibration results showed that hydraulics were well represented, vegetation inclusion often improved the simulated water inundation extent accuracy at high flows, but that local erosion and sediment deposition were difficult to replicate. Simulation of morphological change was expected to be limited due to simplistic bank erosion prediction methods. Nevertheless, the model was considered adequate since simulated total bank erosion was comparable to that observed and realistic river characteristics (riffles, pools, and channel width) were produced. Flood events ranging from the 2- to 500-year flood were simulated with the calibrated model, and lupin mortality was estimated using simulation results with the lupin mortality thresholds. Results showed that various degrees of lupin mortality occurred for the different flood events, but that the dominant mortality processes fluctuated between erosion, drag, and inundation. Sediment deposition-induced mortality was minimal, but was likely under-represented in the modeling due to poor model sediment deposition replication and possibly over-restrictive deposition mortality thresholds. The research presented in this thesis provided greater understanding of how natural flood events restore and preserve the floodplain habitats of the UWB and can be used to aid current and future braided river conservation and restoration efforts.
33

Hydrodynamics and Salinity of Pontchartrain Estuary During Hurricanes

Amini, Sina 16 May 2014 (has links)
A hurricane is a combination of sustained winds, low atmospheric pressures and precipitation. Over the past decades, Louisiana has experienced several devastating hurricanes. The east bank of the City of New Orleans is bounded by Lake Pontchartrain to the North and the Mississippi River to the South. Lake Pontchartrain is a brackish system connected to the Gulf of Mexico through Lake Borgne to the East. As a Hurricane enters the Estuary from the Gulf of Mexico, it imposes a sustained surge of a few meters which may lead to flooding in areas which are not protected by levees. These flood water may be saline. Saltwater flooding is an environmental issue in flooded marshlands since saltwater can be fatal to some plants. The response of salinity and storm surge to hurricane duration which represents the forward speed of the storm is numerically modeled.
34

The Effects of Sediment Properties on Barrier Island Morphology and Processes: A Numerical Modeling Experiment

Kime, Brittany 20 December 2018 (has links)
Barrier island restoration and nourishment is necessary for sustaining coastal systems worldwide. In the Mississippi River Delta Plain, the lack of sediment supply, relative sea level rise, and reworking of abandoned delta lobes promote rapid disintegration of barriers, which can contribute to mainland storm impacts. Barrier island restorations that utilize higher quality sediments (Outer Continental Shelf- OCS) are expected to exhibit higher resiliency, withstanding coastal erosion, event-induced erosion, and ongoing transgression when compared to barriers nourished using lower quality nearshore (NS) sands. Additionally, use of OCS sediments increases sediment supply by adding material to the system supporting increased barrier longevity by maintaining a subaerial footprint longer compared to NS sediments. We used the Delft3D modeling suite to study barrier geomorphic trajectories nourished using OCS/NS sands, compared with control simulations with no nourishment. Resulting morphologies from 18 simulations with forcing that included annualized forcing, storms, and SLR are evaluated and compared.

Page generated in 0.0314 seconds