• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analog-to-digital converter circuit and system design to improve with CMOS scaling

Mortazavi, Yousof 08 September 2015 (has links)
There is a need to rethink the design of analog/mixed-signal circuits to be viable in state-of-the-art nanometer-scale CMOS processes due to the hostile environment they create for analog circuits. Reduced supply voltages and smaller capacitances are beneficial to circuit speed and digital circuit power efficiency; however, these changes along with smaller dimensions and close coupling of fast-switching digital circuits have made high-accuracy voltage domain analog processing increasingly difficult. In this work, techniques to improve analog-to-digital converters (ADC) for nanometer-scale processes are explored. First, I propose a mostly-digital time-based oversampling delta-sigma (∆Σ) ADC architecture. This system uses time, rather than voltage, as the analog variable for its quantizer, where the noise shaping process is realized by modulating the width of a variable-width digital "pulse." The merits of this architecture render it not only viable to scaling, but also enable improved circuit performance with ever-increasing time resolution of scaled CMOS processes. This is in contrast to traditional voltage-based analog circuit design, whose performance generally decreases with scaling due to increasingly higher voltage uncertainty due to supply voltage reduction and short-channel effects. In conjunction with Dr. Woo Young Jung while he was a Ph.D. student at The University of Texas at Austin, two prototype implementations of the proposed architecture were designed and fabricated in TSMC 180 nm CMOS and IBM 45 nm Silicon-On-Insulator (SOI) processes. The prototype ADCs demonstrate that the architecture can achieve bandwidths of 5-20 MHz and ∼50 dB SNR with very small area. The first generation ADC core occupies an area of only 0.0275 mm² , while the second generation ADC core occupies 0.0192 mm² . The two prototypes can be categorized as some of the smallestarea modulators in the literature. Second, I analyze the measured results of the prototype ADC chips, and determine the source for the harmonic distortion. I then demonstrate a digital calibration algorithm that sufficiently mitigates the distortion. This calibration approach falls in the general philosophy of digitally-assisted analog systems. In this philosophy, digital calibration and post-correction are favored over traditional analog solutions, in which there is a high cost to the analog solution either in complexity, power, or area. / text
2

Frequency syntheses with delta-sigma modulations and their applications for mixed signal testing

Yang, Dayu, Dai, Foster. January 2006 (has links)
Dissertation (Ph.D.)--Auburn University,2006. / Abstract. Vita. Includes bibliographic references (p.110-113).
3

A novel ROM compression technique and a high speed sigma-delta modulator design for direct digital synthesizer

Ghosh, Malinky. Dai, Foster. January 2006 (has links)
Thesis--Auburn University, 2006. / Abstract. Includes bibliographic references (p.78-80).
4

Passive Loop Filter Zoom Analog to Digital Converters

January 2018 (has links)
abstract: This dissertation proposes and presents two different passive sigma-delta modulator zoom Analog to Digital Converter (ADC) architectures. The first ADC is fullydifferential, synthesizable zoom-ADC architecture with a passive loop filter for lowfrequency Built in Self-Test (BIST) applications. The detailed ADC architecture and a step by step process designing the zoom-ADC along with a synthesis tool that can target various design specifications are presented. The design flow does not rely on extensive knowledge of an experienced ADC designer. Two example set of BIST ADCs have been synthesized with different performance requirements in 65nm CMOS process. The first ADC achieves 90.4dB Signal to Noise Ratio (SNR) in 512µs measurement time and consumes 17µW power. Another example achieves 78.2dB SNR in 31.25µs measurement time and consumes 63µW power. The second ADC architecture is a multi-mode, dynamically zooming passive sigma-delta modulator. The architecture is based on a 5b interpolating flash ADC as the zooming unit, and a passive discrete time sigma delta modulator as the fine conversion unit. The proposed ADC provides an Oversampling Ratio (OSR)- independent, dynamic zooming technique, employing an interpolating zooming front-end. The modulator covers between 0.1 MHz and 10 MHz signal bandwidth which makes it suitable for cellular applications including 4G radio systems. By reconfiguring the OSR, bias current, and component parameters, optimal power consumption can be achieved for every mode. The ADC is implemented in 0.13 µm CMOS technology and it achieves an SNDR of 82.2/77.1/74.2/68 dB for 0.1/1.92/5/10MHz bandwidth with 1.3/5.7/9.6/11.9mW power consumption from a 1.2 V supply. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2018
5

Modelování perspektivních struktur modulátorů delta-sigma s využitím techniky spínaných proudů / The Modelling of the Delta-Sigma Modulators Modern Structures Utilizing Switched-Current Technique

Pavlík, Michal January 2009 (has links)
The thesis deals with an influence of the errors caused by utilization of the switched-current (SI) approach in the delta-sigma modulators. The basic block of the SI technique is current memory cell (CMC). The analysis of the errors starts with the design of the CMC using CADENCE software and AMIS CMOS 0.7 um technology. Based upon analysis of the CMC no ideal transfer function and advanced techniques of their behavior modeling are depicted. The mathematical models were made and implemented using MATLAB SIMULINK software. The models are very universal. Therefore, it is possible to analyze various structures of the delta-sigma modulators using demanded technology. The influence of the SI technique approach errors sources, on the modulators behavior with the CMC of the 1st and 2nd generation, is concluded at the end.

Page generated in 0.0711 seconds