• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Louver Length and Vortex Generators to Augment Tube Wall Heat Transfer in Louvered Fin Heat Exchangers

Sanders, Paul Alan 21 October 2005 (has links)
There are several different types of compact heat exchangers used in applications where small size and weight are required. One particular type of compact heat exchanger, the louvered fin heat exchanger, has been used heavily in the automotive and air conditioning industries. Over the last several decades, the majority of the work towards improving louvered fin exchanger efficiency has focused on designing more efficient fins by optimizing fin parameters like louver angle, fin pitch, louver pitch, and louver length. At this point in time, many improvements to standard louver geometry have been made, so other surfaces and methods of enhancing exchanger performance need to be studied if any significant future efficiency gains are to be expected. This thesis presents a detailed experimental study that has two major foci relative to the performance of the louvered fin compact heat exchanger. The first is to determine the effect of louver length on pressure drop and tube wall heat transfer, which is the primary heat transfer surface in the heat exchanger. The second is to augment tube wall heat transfer with the use of delta winglets placed on the fins near the tube wall. These studies were completed on a 20X scale model of a louvered fin exchanger with a fin pitch to louver pitch ratio of 0.76 and a louver angle of 27°, over a Reynolds number range based on louver pitch of 230 < ReLp < 1016. The three louver lengths evaluated were 100%, 82%, and 70% of the fin height and delta winglet experiments were performed for louver length to fin pitch ratios of 100% and 70%. Heat transfer results for the louver length tests show that decreasing louver length leads to increases in tube wall heat transfer of 0% to 50% depending on Reynolds number. Also, delta winglets placed on the fins near the tube wall have been shown to produce average tube wall heat transfer augmentations of up to 52%. / Master of Science
2

Practical Applications of Delta Winglets in Compact Heat Exchangers with Louvered Fins

Lawson, Michael James 13 October 2006 (has links)
Compact heat exchangers are widely used by the automotive industry in systems that cool engine components. Louvered fin heat exchangers are used over their continuous fin counterparts because of the significant advantages they provide in heat transfer efficiency, while only causing small increases in overall pressure losses. With the recent emphasis that has been placed on reducing fuel consumption, decreasing the size of the compact heat exchanger has become an important concern. With reduction in size comes not only weight savings, but also a decrease in frontal area in a vehicle that must be dedicated to the heat exchanger, allowing for more aerodynamic vehicle designs. Air-side resistance on the tube wall and louvered fin surfaces comprises over 85% of total resistance to heat transfer in louvered fin heat exchangers. The tube wall surface is considered the primary surface for heat transfer, where the temperature between the working fluid and convecting air is at a maximum. Recent studies have shown that implementing delta winglets on louvered fins along the tube wall is an effective method of augmenting tube wall heat transfer. In this thesis, the effect of delta winglets is investigated in both two- and three-dimensional louvered fin arrays. For both geometries, winglets are simulated in a manufacturable configuration, where piercings in the louvered fins that would result from the winglet manufacturing process are modeled. Using the two-dimensional geometry to model tube wall heat transfer was shown not to accurately predict heat transfer coefficients. In a two-dimensional geometry, winglets were found not to be an effective means for augmenting tube wall heat transfer and caused only 8% augmentation. Using the three-dimensional geometry, winglets with simulated piercings were observed to cause up to 24% tube wall heat transfer augmentation, with a corresponding increase in pressure losses of only 10%. / Master of Science

Page generated in 0.055 seconds