Spelling suggestions: "subject:"demanda dde energía"" "subject:"demanda dde energías""
1 |
Impacto del cambio climático sobre la demanda eléctrica urbana en Santiago hacia fines del Siglo XXIBarría Oyarzún, Fabián Alfredo January 2014 (has links)
Magíster en Ciencias de la Ingeniería, Mención Eléctrica / La principal motivación de este trabajo nace del consenso existente en la comunidad científica respecto a lo evidente e inequívoco del cambio climático, entendido como la variación del clima, en el largo plazo, atribuida a la alteración de la composición atmosférica por la emisión de gases de efecto invernadero debido, principalmente, a la combustión fósil y la deforestación. Una de las manifestaciones de este cambio es el calentamiento global, el cual interactúa con muchos sistemas antropogénicos, entre ellos los sistemas eléctricos, con los que presenta una relación de impacto dual ya que, por un lado, éstos contribuyen al cambio climático mediante sus emisiones, y por otro lado, se ven afectados por él.
La presente tesis se centra en evaluar el impacto del cambio climático sobre la demanda eléctrica en Santiago de Chile hacia fines del Siglo XXI. Se ha escogido esta ciudad por ser el principal núcleo urbano del país y el centro de mayor densidad de demanda del SIC.
En este estudio se propone una metodología de determinación de la sensibilidad demanda-clima basada en un enfoque top-down, mediante un modelo de regresión lineal múltiple, incluyendo aspectos innovadores, respecto a la literatura, en lo referente a la construcción de la curva de sensibilidad. Este trabajo realiza también un aporte novedoso ajustando la sensibilidad actual a partir de una serie de modificaciones estructurales que surgen como adaptación al cambio climático y al crecimiento económico. En base a ello, se estiman las sensibilidades futuras hacia fines del Siglo XXI, evaluando distintos escenarios climáticos y diferentes sensibilidades.
Se encuentra así, que la demanda eléctrica de Santiago es sensible al día de la semana, a las horas de luz solar, y a la temperatura ambiente, variables que se suman a la población y el crecimiento económico.
En este contexto, se evalúa el impacto agregado del cambio climático en conjunto con sus cambios estructurales asociados, estimándose aumentos en la demanda a lo largo de todo el año, principalmente en verano, e identificando variables críticas en este impacto, tales como la penetración y eficiencia de los sistemas de aire acondicionado, la sustitución de combustibles, entre otras.
Posteriormente, se analiza el efecto como señal aislada del cambio climático, determinándose aumentos en la demanda eléctrica en verano, y disminuciones en invierno, que se verían reflejados en la necesidad de aumentar en forma importante la capacidad instalada de los sistemas eléctricos y enfrentar la sub-utilización de tal capacidad durante gran parte del año debido a los disímiles efectos estacionales del cambio climático sobre la demanda eléctrica de la ciudad.
|
2 |
Estimación de la Demanda Residencial de Electricidad en el PerúBendezu Medina, Luis Alfonso January 2010 (has links)
Este trabajo realiza una estimación de la demanda residencial de electricidad en el Perú, empleando información de una encuesta de hogares diseñada específicamente para este fin. Las características de esta base de datos permiten obtener el consumo físico de electricidad directamente de las empresas de distribución, solucionando así cualquier posible error de medición. Adicionalmente, se utiliza el método de máxima verosimilitud para abordar en el modelo la existencia de tarifas crecientes en bloque. Para poder identificar correctamente las elasticidades precio e ingreso, la estrategia de identificación consiste en utilizar la variación exógena producida por la creación del subsidio a la electricidad en el año 2001, que implicó una reducción de hasta 50% de las tarifas para todo consumo por debajo de 100 kWh, beneficiando principalmente a los hogares de menor consumo.
Los resultados de las estimaciones indican que el hogar promedio en el Perú tiene una demanda inelástica tanto respecto del precio como del ingreso. No obstante, estos resultados esconden una importante heterogeneidad. En particular, la elasticidad precio tiene un valor promedio de -0.18, pero abarca un rango que se encuentra entre cero y -1.97, mientras que la elasticidad ingreso tiene un valor promedio de 0.11, pero varía entre cero y 1.9. Estimaciones realizadas con submuestras para determinadas regiones no muestran diferencias estadísticamente significativas con las elasticidades obtenidas a nivel nacional. Adicionalmente, se encuentra que existe una relación directa entre las elasticidades precio e ingreso y el nivel de ingreso del hogar. Específicamente, aquellos hogares con mayor nivel de ingresos son aquellos con mayor elasticidad ingreso, mientras que los hogares de menores ingresos son más sensibles ante variaciones en precios.
|
3 |
Método para la Generación de Pérfiles de Demanda en Comunidades Aisladas y Predicción de Demanda de Corto Plazo, para Micro-Redes Basadas en Energías RenovablesLlanos Proaño, Jacqueline del Rosario January 2012 (has links)
“Método para la Generación de Perfiles de Demanda en Comunidades Aisladas y Predicción de Demanda de Corto Plazo, para Micro-redes Basadas en Energías Renovables”
El incremento del abastecimiento energético en comunidades aisladas empleando fuentes renovables, ha impulsado el estudio de la demanda eléctrica en estas zonas. Como etapa inicial de este tipo de proyectos se requieren perfiles de demanda eléctrica futuros que reflejen el comportamiento de los usuarios al disponer de energía ininterrumpida. Estos perfiles permiten además dimensionar las unidades de generación.
Una herramienta importante en micro-redes eléctricas basadas en energías renovables es el sistema de gestión de la energía (EMS) que proporciona consignas óptimas a las unidades de generación, basadas en: predictor de recursos de energía, y predictor de demanda eléctrica.
Esta tesis se enfoca en el desarrollo de un método que permita obtener perfiles de demanda diarios para comunidades aisladas que no cuentan con energía eléctrica, o que disponen de suministro eléctrico en horarios limitados. La propuesta es un método que incorpora un modelo que procesa entradas como: el número de habitantes, número de casas, número de escuelas, encuestas individuales por cada casa y número de luminarias del alumbrado público, obteniendo al final la demanda eléctrica total de la comunidad, y la demanda total considerando días festivos. Esta propuesta incorpora: módulo de entradas, módulo clasificador en base a mapas auto-organizados de Kohonen (SOM), módulo de búsqueda heurística, base de datos y módulos de generación de perfiles más específicos como por ejemplo de escuelas, y alumbrado público.
Además en este trabajo de tesis, para la predicción del consumo eléctrico a corto plazo, se usa redes neuronales artificiales, por su capacidad en el tratamiento de las no linealidades. Requiere como entrada la demanda de un día pasado obteniendo a su salida la predicción de la demanda eléctrica en un horizonte de dos días. Utiliza entrenamiento en línea, permitiendo que el modelo vaya cambiando los parámetros neuronales en función del incremento de mediciones de la demanda eléctrica disponible en línea, para el entrenamiento.
Para validar ambas propuestas se considera una micro-red ubicada en Huataconto, proyecto ESUSCON, que disponía de energía desde las 14:00 hasta 00:00. Se obtuvo un perfil diario de demanda de la comunidad, y se verificó que el perfil generado por el método en base a SOM se aproxima al perfil de demanda diario cuando se dispone de suministro ininterrumpido.
El modelo neuronal de predicción de la demanda eléctrica propuesto e implementado, utiliza mediciones reales, obteniendo errores MAPE del 13%, y superando a modelos lineales tradicionales. Este modelo de estimación actualmente es usado en el sistema de gestión de energía EMS en la micro-red de Huatacondo.
Como trabajo futuro se plantea trabajar en predictores de demanda que consideren sistemas de gestión de demanda, utilizando señales indicadoras del comportamiento del uso de la energía por parte de los usuarios aplicada a la micro-red Huatacondo.
|
4 |
Meta-Analysis of Income and Price Elasticities Energy Demand: Some Public Policy Implications for Latin America / Metaanálisis de las elasticidades ingreso y precio de la demanda de energía: algunas implicaciones de politica pública para América LatinaGalindo, Luis Miguel, Samaniego, Joseluis, Ferrer Carbonell, Jimy, Alatorre, José Eduardo, Reyes, Orlando 10 April 2018 (has links)
The aim of this paper is to analyze the variation in empirical estimates of the income and price elasticities of energy demand. The evidence presented, through a meta-analysis, allows identification of the weighted average of the income and price elasticities, shows that the estimates are very heterogeneous, that there is publication bias, and that factors such as region, energy sector, among others, affect its volatility. The evidence also indicates that income elasticity in Latin America is greater than in the OECD countries, and that the price elasticity of energy demand is lower in Latin America than in the OECD countries. Therefore, continued economic growth in Latin America will be accompanied by a growth in energy demand. Moreover, the establishment of a tax in Latin America, under the current elasticities, is less effective and will be insufficient to control the increase in energy consumption. / El objetivo de este artículo es analizar la variación de las elasticidades ingreso y precio de la demanda de energía. La evidencia presentada, con un metaanálisis, permite identificar la media ponderada de estas elasticidades ingreso y precio, muestra que las estimaciones son muy heterogé- neas, que existe sesgo de publicación y que algunos factores como la región, el sector del consumo de energía, entre otros, inciden en su volatilidad. La evidencia también indica que la elasticidad ingreso en América Latina es mayor que aquella de los países de la OCDE y, simultáneamente, que la elasticidad precio de la demanda de energía es menor en América Latina que en los países de la OCDE. Así, un crecimiento económico continuo en América Latina vendrá acompañado de un crecimiento de la demanda de energía y que el establecimiento de un impuesto en América Latina, bajo las actuales elasticidades, es menos efectivo y en general sería insuficiente para controlar el aumento del consumo de energía.
|
5 |
Optimization Algorithm Based on Novelty Search Applied to the Treatment of Uncertainty in ModelsMartínez Rodríguez, David 23 December 2021 (has links)
[ES] La búsqueda novedosa es un nuevo paradigma de los algoritmos de optimización, evolucionarios y bioinspirados, que está basado en la idea de forzar la búsqueda del óptimo global en aquellas partes inexploradas del dominio de la función que no son atractivas para el algoritmo, con la intención de evitar estancamientos en óptimos locales. La búsqueda novedosa se ha aplicado al algoritmo de optimización de enjambre de partículas, obteniendo un nuevo algoritmo denominado algoritmo de enjambre novedoso (NS). NS se ha aplicado al conjunto de pruebas sintéticas CEC2005, comparando los resultados con los obtenidos por otros algoritmos del estado del arte. Los resultados muestran un mejor comportamiento de NS en funciones altamente no lineales, a cambio de un aumento en la complejidad computacional. En lo que resta de trabajo, el algoritmo NS se ha aplicado en diferentes modelos, específicamente en el diseño de un motor de combustión interna, en la estimación de demanda de energía mediante gramáticas de enjambre, en la evolución del cáncer de vejiga de un paciente concreto y en la evolución del COVID-19. Cabe remarcar que, en el estudio de los modelos de COVID-19, se ha tenido en cuenta la incertidumbre, tanto de los datos como de la evolución de la enfermedad. / [CA] La cerca nova és un nou paradigma dels algoritmes d'optimització, evolucionaris i bioinspirats, que està basat en la idea de forçar la cerca de l'òptim global en les parts inexplorades del domini de la funció que no són atractives per a l'algoritme, amb la intenció d'evitar estancaments en òptims locals. La cerca nova s'ha aplicat a l'algoritme d'optimització d'eixam de partícules, obtenint un nou algoritme denominat algoritme d'eixam nou (NS). NS s'ha aplicat al conjunt de proves sintètiques CEC2005, comparant els resultats amb els obtinguts per altres algoritmes de l'estat de l'art. Els resultats mostren un millor comportament de NS en funcions altament no lineals, a canvi d'un augment en la complexitat computacional. En el que resta de treball, l'algoritme NS s'ha aplicat en diferents models, específicament en el disseny d'un motor de combustió interna, en l'estimació de demanda d'energia mitjançant gramàtiques d'eixam, en l'evolució del càncer de bufeta d'un pacient concret i en l'evolució del COVID-19. Cal remarcar que, en l'estudi dels models de COVID-19, s'ha tingut en compte la incertesa, tant de les dades com de l'evolució de la malaltia. / [EN] Novelty Search is a recent paradigm in evolutionary and bio-inspired optimization algorithms, based on the idea of forcing to look for those unexplored parts of the domain of the function that might be unattractive for the algorithm, with the aim of avoiding stagnation in local optima. Novelty Search has been applied to the Particle Swarm Optimization algorithm, obtaining a new algorithm named Novelty Swarm (NS). NS has been applied to the CEC2005 benchmark, comparing its results with other state of the art algorithms. The results show better behaviour in high nonlinear functions at the cost of increasing the computational complexity. During the rest of the thesis, the NS
algorithm has been used in different models, specifically the design of an Internal Combustion Engine, the prediction of energy demand estimation with Grammatical Swarm, the evolution of the bladder cancer of a specific patient and the evolution of COVID-19. It is also remarkable that, in the study of COVID-19 models, uncertainty of the data and the evolution of the disease has been taken in account. / Martínez Rodríguez, D. (2021). Optimization Algorithm Based on Novelty Search Applied to the Treatment of Uncertainty in Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/178994
|
Page generated in 0.0823 seconds