• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 31
  • 22
  • 10
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 208
  • 208
  • 68
  • 42
  • 32
  • 32
  • 23
  • 23
  • 21
  • 21
  • 20
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the purinergic P2X7 receptor in small intestinal inflammation

Huang, Szu-Wei January 2015 (has links)
The purinergic P2X7 receptor (P2X7R), an adenosine triphosphate (ATP)-gated receptor, is widely distributed in a variety of cell types such as neuron cells, immune cells and epithelial cells. P2X7R on cells senses extracellular ATP released from dying cells which then acts as a danger signal and initiates inflammation. Activation of P2X7R results in various downstream events, including Ca2+ influx, nonselective membrane pore formation, cell death, assembly of the inflammasome, and killing of intracellular pathogens. Epithelial cells in the gut also express P2X7R and act as a sentinel that protects against infection and responds to changes in environmental stimuli. However, the role of P2X7R in IECs is poorly defined. Given that infection of pathogens often causes cellular damage and the released ATP may be sensed by P2X7R, we hypothesised that IECs initiate intestinal inflammation via activation of the P2X7R in response to infection. Thus, the aim of this thesis was to characterise the role of P2X7R in the initiation and development of small intestinal inflammation. In order to achieve this aim, we used two parasite-induced murine ileitis models, Toxoplasma gondii (T. gondii) and Trichinella spiralis (T. spiralis), which induce Th1 and Th2 immunity respectively. In the in vivo model of T. gondii infection, we found that P2X7R deficiency was associated with less intestinal epithelial responsiveness to the infection. The P2X7R-/- IECs had reduced CCL5 and CCL20 chemokine expression which was associated with reduced recruitment of CD103+CD11b- dendritic cells (DCs) to the small intestinal epithelium at day 1 post infection (p.i.). This finding was supported by infection of bone marrow chimeras showing a decrease in the recruitment of WT P2X7R+/+ CD103+ DCs to a P2X7R-/- epithelium. To address whether the reduced DC response impacted on development of adaptive immunity, we analysed serum IFN-g and the proportion of splenic IFN-g+CD4+ T cells at day 8 p.i., and showed they were reduced in P2X7R-/- mice. In the in vivo model of T. spiralis infection, P2X7R deficiency was also associated with reduced intestinal epithelial responsiveness to this infection characterised by lower CCL5 expression in IECs. A significant decrease in the recruitment of CD103+CD11b+ DCs at day 2 p.i. was noted in P2X7R-/- animals, and the importance of epithelial P2X7R in DC recruitment was confirmed using bone marrow chimeras. The P2X7R-/- mice, compared with the WT, had delayed progression of small intestinal inflammation, accompanied by a reduction in the percentage of IL-4+CD4+ T cells and IL-4 levels at day 8 p.i. The reduced IL-4 response was associated with a delayed worm expulsion in the P2X7R-/- mice at day 12 p.i. An in vitro study demonstrated that P2X7R blockade using the chemical inhibitor A-740003, significantly decreased CCL5, IL-6 and TNF-a secretion from mouse intestinal epithelial CMT-93 cells in response to T. gondii infection. A similar decrease in the level of CCL5 produced was also observed using primary P2X7R-/- intestinal crypt cells stimulated with lipopolysaccharide (LPS) compared with WT cells. This data indicates a proinflammatory role for P2X7R during infection. Although P2X7R signalling is known to induce the assembly of the inflammasome, IECs did not secrete the inflammasome-associated cytokines IL-1b and IL-18 in response to T. gondii infection. Moreover, P2X7R signalling had no effect on the induction of cell death in T. gondii-infected IECs. Interestingly, there was a novel finding that P2X7R antagonism inhibited T. gondii infectivity in CMT-93 cells. In summary, we have shown that P2X7R signalling mediated CCL5 expression in IECs in response to infection. Epithelial chemokines are important for the initiation of small intestinal inflammation via recruitment of innate cells such as DCs which can then prime for protective adaptive immunity. These results in this thesis improve the understanding of the role of P2X7R in the intestinal immune system and reveal novel roles for epithelial P2X7R. The work suggests the potential of epithelial P2X7R as a target for pharmacological treatment of intestinal inflammatory disorders.
2

Determining a role for CD45 in dendritic cells

Cross, Jennifer 11 1900 (has links)
CD45 is a leukocyte specific protein tyrosine phosphatase present on the surface of all nucleated, hematopoietic cells. Despite its well-characterized role in antigen receptor signaling, little is known about its function in cell types like dendritic cells (DCs). DCs are crucial to the immune response both for its initiation and for its suppression. In this dissertation, the effects of the lack of CD45 on dendritic cell development and function were studied. The most important finding was that the lack of CD45 had a differential impact on the proinflammatory cytokine profiles elicited in DCs by different TLR agonists. TLR4 ligation led to a decrease in proinflammatory cytokine and IFNβ production whereas stimulation through TLR2 or TLR9 increased cytokine production. This suggests CD45 may be acting as a negative regulator of MyD88-dependent cytokine signaling and a positive regulator of the Trif pathway. The absence of CD45 caused alterations in the phosphotyrosine levels of several Src family kinases including Lyn. In CD45-/- DCs, Lyn was not activated upon LPS stimulation and several substrates of Lyn that appear as negative regulators in the MyD88-dependent pathway of TLR4 signaling are also not phosphorylated, providing evidence that CD45 may be a negative regulator of this pathway. The absence of CD45 in TLR activated DCs had an effect on the IFNγ secretion by CD4+ T cells and NK cells, consistent with the cytokine profiles of the DCs These data demonstrate that modulation of TLR signaling by CD45, in DCs, has the ability to impact the development of the adaptive immune response. The absence of CD45 in mice did not result in increased survival upon challenge with a high dose of LPS. Serum TNFα levels were increased in the CD45-/- mice and they showed more severe symptoms of septic shock. However, the CD45-/- mice were also found to have an increase in the number of peritoneal macrophages. Overall this study shows that CD45 does play an important role in cell types other than lymphocytes. CD45 is a regulator of TLR-mediated cytokine secretion in DCs and thus directs the outcome of the adaptive immune response.
3

Characterization of a Novel Dendritic Cell Population

Mikhailova, Anastassia 22 November 2012 (has links)
Conventional DC (cDC) arise from circulating immediate precursors (pre-cDC), and are currently thought to be terminally differentiated. Here we show that cDC are capable of generating progeny that lost all characteristic features of cDC and aquired regulatory properties. Sorted bone marrow pre-cDCs were cultured on a stromal monolayer in the presence or absence of granulocyte-macrophage colony stimulating factor (GM-CSF). In the absence of GM-CSF, pre-cDC derived DCs gave rise to a homogeneous population of CD11clow MHClow cells (DC-regs) on day 8-10 of culture. DC-regs failed to up-regulate major histocompatibility complex class II (MHCII) and co-stimulatory molecules in response to DC maturation stimuli, were poor stimulators in T cell proliferation assays and suppressed T cell proliferation in cultures containing immuno-stimulatory DC. Co-transfer of DC-regs with DCs in vivo did not inhibit proliferation of T cells. These findings reveal the potential of DCs to generate a regulatory DC population with immunosuppressive properties.
4

Characterization of a Novel Dendritic Cell Population

Mikhailova, Anastassia 22 November 2012 (has links)
Conventional DC (cDC) arise from circulating immediate precursors (pre-cDC), and are currently thought to be terminally differentiated. Here we show that cDC are capable of generating progeny that lost all characteristic features of cDC and aquired regulatory properties. Sorted bone marrow pre-cDCs were cultured on a stromal monolayer in the presence or absence of granulocyte-macrophage colony stimulating factor (GM-CSF). In the absence of GM-CSF, pre-cDC derived DCs gave rise to a homogeneous population of CD11clow MHClow cells (DC-regs) on day 8-10 of culture. DC-regs failed to up-regulate major histocompatibility complex class II (MHCII) and co-stimulatory molecules in response to DC maturation stimuli, were poor stimulators in T cell proliferation assays and suppressed T cell proliferation in cultures containing immuno-stimulatory DC. Co-transfer of DC-regs with DCs in vivo did not inhibit proliferation of T cells. These findings reveal the potential of DCs to generate a regulatory DC population with immunosuppressive properties.
5

Determining a role for CD45 in dendritic cells

Cross, Jennifer 11 1900 (has links)
CD45 is a leukocyte specific protein tyrosine phosphatase present on the surface of all nucleated, hematopoietic cells. Despite its well-characterized role in antigen receptor signaling, little is known about its function in cell types like dendritic cells (DCs). DCs are crucial to the immune response both for its initiation and for its suppression. In this dissertation, the effects of the lack of CD45 on dendritic cell development and function were studied. The most important finding was that the lack of CD45 had a differential impact on the proinflammatory cytokine profiles elicited in DCs by different TLR agonists. TLR4 ligation led to a decrease in proinflammatory cytokine and IFNβ production whereas stimulation through TLR2 or TLR9 increased cytokine production. This suggests CD45 may be acting as a negative regulator of MyD88-dependent cytokine signaling and a positive regulator of the Trif pathway. The absence of CD45 caused alterations in the phosphotyrosine levels of several Src family kinases including Lyn. In CD45-/- DCs, Lyn was not activated upon LPS stimulation and several substrates of Lyn that appear as negative regulators in the MyD88-dependent pathway of TLR4 signaling are also not phosphorylated, providing evidence that CD45 may be a negative regulator of this pathway. The absence of CD45 in TLR activated DCs had an effect on the IFNγ secretion by CD4+ T cells and NK cells, consistent with the cytokine profiles of the DCs These data demonstrate that modulation of TLR signaling by CD45, in DCs, has the ability to impact the development of the adaptive immune response. The absence of CD45 in mice did not result in increased survival upon challenge with a high dose of LPS. Serum TNFα levels were increased in the CD45-/- mice and they showed more severe symptoms of septic shock. However, the CD45-/- mice were also found to have an increase in the number of peritoneal macrophages. Overall this study shows that CD45 does play an important role in cell types other than lymphocytes. CD45 is a regulator of TLR-mediated cytokine secretion in DCs and thus directs the outcome of the adaptive immune response.
6

Determining a role for CD45 in dendritic cells

Cross, Jennifer 11 1900 (has links)
CD45 is a leukocyte specific protein tyrosine phosphatase present on the surface of all nucleated, hematopoietic cells. Despite its well-characterized role in antigen receptor signaling, little is known about its function in cell types like dendritic cells (DCs). DCs are crucial to the immune response both for its initiation and for its suppression. In this dissertation, the effects of the lack of CD45 on dendritic cell development and function were studied. The most important finding was that the lack of CD45 had a differential impact on the proinflammatory cytokine profiles elicited in DCs by different TLR agonists. TLR4 ligation led to a decrease in proinflammatory cytokine and IFNβ production whereas stimulation through TLR2 or TLR9 increased cytokine production. This suggests CD45 may be acting as a negative regulator of MyD88-dependent cytokine signaling and a positive regulator of the Trif pathway. The absence of CD45 caused alterations in the phosphotyrosine levels of several Src family kinases including Lyn. In CD45-/- DCs, Lyn was not activated upon LPS stimulation and several substrates of Lyn that appear as negative regulators in the MyD88-dependent pathway of TLR4 signaling are also not phosphorylated, providing evidence that CD45 may be a negative regulator of this pathway. The absence of CD45 in TLR activated DCs had an effect on the IFNγ secretion by CD4+ T cells and NK cells, consistent with the cytokine profiles of the DCs These data demonstrate that modulation of TLR signaling by CD45, in DCs, has the ability to impact the development of the adaptive immune response. The absence of CD45 in mice did not result in increased survival upon challenge with a high dose of LPS. Serum TNFα levels were increased in the CD45-/- mice and they showed more severe symptoms of septic shock. However, the CD45-/- mice were also found to have an increase in the number of peritoneal macrophages. Overall this study shows that CD45 does play an important role in cell types other than lymphocytes. CD45 is a regulator of TLR-mediated cytokine secretion in DCs and thus directs the outcome of the adaptive immune response. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
7

Intradermal Immunization With Double-mutant Labile Toxin Redirects Antigen-specific Cd4 T Cell Responses To The Mucosa

January 2016 (has links)
Daniel R Frederick
8

Diverse regulation of natural killer cell functions by dendritic cells

Mahmood, Sajid January 2014 (has links)
Natural killer (NK) cells are innate lymphocytes with inherent ability to eliminate infected cells and produce several cytokines/chemokines. They express surface receptors to sense environment and interact with other immune cells including the Dendritic cells (DC). Reciprocally, DCs are also shown to activate NK-cells. NK/DC cross-talk is well-documented, yet the molecular interactions and the diverse NK-cell activities regulated by DC remain unclear. Several target proteins such as MHC-1, Qa-1 mediate NK-cell target recognition. One such antigen, Ocil/Clr-b functions as a cognate ligand of NKR-P1B/D, NK-inhibitory receptor. In first aim of my study, I documented that deficiency of Ocil/Clr-b expression not only augmented the sensitivity of DC towards NK-cell cytotoxicity but also regulated the development of mature NK-cells. Thus suggesting NKR-P1B/D:Ocil to be another receptor:ligand system, besides Ly49:MHC-1, that regulates NK-cell responsiveness. Src homology region 2-containing protein tyrosine phosphatase-1 (SHP-1) transmits inhibitory signals of the specific NK-inhibitory receptors, including NKRP-1B/D. SHP-1 silenced NK-cells showed unaffected target recognition towards prototypic target cells in this study. In addition, these cells also displayed an unexpected phenotype of self-killing in-vitro, thus implicated SHP-1 as an important regulator of some other unappreciated NK-cell functions. The data from my third study suggest that DCs are directly implicated in the induction of NK-cell migration. In summary, using a novel live-cell imaging microfluidic platform and conventional transwell migration assay this project established a clear molecular link between DC-derived soluble factors such as IP-10 and NK cell-chemokine receptor such as CXCR3. Previously, GM-CSF was shown as an inflammatory cytokine, involved in the development of DC as well as in mediating Th-1 immune responses. In this study I found that GM-CSF regulates NK-cell migration negatively. Lastly, the fourth aim of my thesis highlighted the critical role of immature-DC in the induction of maturation receptors (NK1.1 & Ly49) on differentiating NK-cells. I successfully established a multi-stage in-vitro NK-cell differentiation model and found that differentiating NK-cells required an active engagement with DCs, in addition to the soluble factors. I believe my PhD project findings would impact the existing knowledge to harness DC-based NK cell therapies in clinical settings. / October 2014
9

DENDRITIC CELL-TARGETED NANOPARTICLES FOR THE DELIVERY OF DNA AND PROTEIN VACCINES

Raghuwanshi,Dharmendra Unknown Date
No description available.
10

Skin dendritic cells : activation, maturation and migration

Eaton, Laura January 2012 (has links)
Langerhans’ cells (LC) are the dendritic cells (DC) of the epidermis and, as sentinels of the immune system, act as a bridge between the innate and adaptive immune responses. When LC, and other DC, recognise an antigen or pathogen they mature and are stimulated to migrate to the lymph nodes, where they orchestrate immune responses. Pathogen derived toll-like receptor (TLR) ligands, and chemical allergens, are recognised as being potentially harmful and stimulate LC to mobilise and mature. Cytokine signals, including tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-18, all induce LC migration and are required for initiating LC mobilisation in response to certain contact allergens. Subsequently, chemokines promote the migration and localisation of LC within the draining lymph nodes. Chemokines are also involved in shaping the adaptive immune response by promoting differential T cell activation, such as T helper (Th)1 or Th2 responses, which are involved in immunity against different pathogens, and also in the development of different types of chemical allergy. The hypothesis is that LC phenotype (activation, migration and chemokine production), is dependent on the nature of the challenge ligand. The murine LC-like cell line XS106 was used to investigate the response of LC following stimulation with TLR ligands and chemical allergens. In addition, LC migration in response to these stimuli was investigated in vivo and the role of TNF-α was examined using mice deficient in either one of the two TNF-α receptors; TNF-R1 or TNF-R2.XS106 cells and freshly isolated LC were associated with a selective type 2 immune response, as determined by preferential expression of type 2 associated chemokines. Furthermore, XS106 cells responded to type 2, but not to type 1, associated TLR ligands. In contrast, all of the TLR ligands tested induced the migration of LC from the epidermis in vivo. Similarly, chemical allergens failed to induce a maximal response of XS106 cells, but did induce the migration of LC in vivo. There were differences in LC migration between the two mouse strains tested, with C57/BL6 strain mice being less responsive to administration of TNF-α and the contact allergen oxazolone compared with BALB/c strain mice. However, C57/BL6 and BALB/c strain mice responded similarly after exposure to the contact allergen 2,4-dinitrochlorobenzene (DNCB). Furthermore, DNCB was able to induce LC migration in mice deficient in TNF-R2, the TNF-α receptor expressed by LC.Collectively, these data suggest a paradigm in which keratinocytes and LC in the epidermis have distinct roles in promoting type 1 and type 2 immune responses, respectively. Therefore, LC may not be activated directly by certain TLR ligands or chemical allergens that are associated with type 1 responses. Consequently the migration of LC in vivo after encounter with these stimuli may be secondary to interaction with keratinocytes, or with other skin resident cells. Together, LC and keratinocytes allow the epidermis to respond to a range of pathogens, in addition to developing the necessary type 1 and type 2 responses. Chemical allergens may have divergent cytokine signalling requirements for the induction of LC migration as, unlike other contact allergens (and other stimuli such as irritant and ultraviolet [UV]B exposure), DNCB may induce LC migration independently of TNF-α.

Page generated in 0.0767 seconds