• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 47
  • 11
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 88
  • 77
  • 77
  • 20
  • 17
  • 17
  • 17
  • 17
  • 14
  • 13
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A 548-Year Tree-Ring Chronology Of Oak (Quercus Spp.) For Southeast Slovenia And Its Significance As a Dating Tool And Climate Archive

Čufar, Katarina, Luis, Martín De, Zupančič, Martin, Eckstein, Dieter 06 1900 (has links)
Tree-ring series of oak, from both living trees (Quercus petraea and Q. robur) and historic timbers in southeastern Slovenia were assembled into a 548-year regional chronology spanning the period A.D. 1456–2003. It is currently the longest and the most replicated oak chronology in this part of Europe located at the transition between Mediterranean, Alpine and continental climatic influence. The chronology correlated significantly with regional and local chronologies up to 700 km away in Austria, Hungary, Serbia, Czech Republic and southern Germany. It also showed good ‘‘heteroconnection’’, i.e. agreement with chronologies of beech (Fagus sylvatica), ash (Fraxinus excelsior) and silver fir (Abies alba) in Slovenia. A preliminary dendroclimatic analysis shows that precipitation and temperature in June accounted for a high amount of variance (r250.51) in the tree-ring widths. The chronology thus contains considerable potential as a climate archive. We also present its use as a tool for the dating of wooden objects of the cultural heritage. Moreover, the chronology can be a point of reference for building tree-ring chronologies in neighboring regions.
62

Climate Response Of Oak Species Across An Environmental Gradient In The Southern Appalachian Mountains, USA

White, Philip B., Van De Gevel, Saskia L., Grissino-Mayer, Henri D., LaForest, Lisa B., Deweese, Georgina G. 01 1900 (has links)
We investigated the climatic sensitivity of oak species across a wide elevation range in the southern Appalachian Mountains, an area where greater knowledge of oak sensitivity is desired. We developed three tree-ring chronologies for climatic analyses from oak cores taken from the Jefferson National Forest, Virginia, and Great Smoky Mountains National Park, Tennessee. We statistically compared the three chronologies with monthly climatic data from 1930 to 2005. The results of our analyses suggest that oak species in the southern Appalachian Mountains require a cool, moist summer for above average-growth to occur. The climate signal increased in duration from high to low elevational and latitudinal gradients, indicating a strong moisture-preconditioning signal during the previous fall at our lowest elevation site. A notable finding of this research was the degree of responsiveness in oaks that are growing in forest interior locations where strong climate sensitivity would not be expected because of the effects of internal stand dynamics. Furthermore, the relationships between evapotranspiration rates and the geographic factors of elevation, latitude, and aspect influence the climate signals at the three sites. Our research suggests that oaks located in a warm and xeric climate experience more physiological stress and put forth a more varied climatic response.
63

Citlivost letokruhových řad borovice lesní (Pinus sylvestris) ke klimatickým parametrům / Sensitivity of Scotch pine ring-width chronologies to climatic variables

Lehečková, Eliška January 2013 (has links)
Presented master's thesis deals with the climate sensitivity of radial growth of Scots Pine (Pinus sylvestris) growing in the Protected Landscape Area Kokořínsko. The principal aim was to find out whether there are differences in the climate-growth response of pines growing on dry and mesic sites. To cope with that question tree ring cores were collected from stands on dry sandstones plateau and from stands near valley bottom with better water supply. Residual chronologies were developed and climatic factors limiting growth were identified using partial correlation analysis. The results show that pines on rocky sites respond positively to high precipitation during the vegetation season whereas trees on wetter sites react positively to high temperatures. In most study stands high February temperatures positively affect radial growth. Moving partial correlations analysis showed that the strongest responses to month climatic variables were stable over the studied period 1902 - 2009. Pointer years were determined and compared with precipitation and temperature anomalies in the corresponding pointer year, furthermore the effect of climate on number of trees with growth anomaly was studied using partial correlations analysis. Results of these analyses were in compliance with the previous findings. In...
64

Gender-Related Climate Response Of Radial Growth In Dioecious Fraxinus Mandshurica Trees

Gao, Lushuang, Zhang, Chunyu, Zhao, Xiuhai, Gadow, Klaus 07 1900 (has links)
This paper presents an analysis of tree-ring growth patterns of male and female Fraxinus mandshurica trees from 1931 to 2007. The specific object was to study the response of radial growth to climate variables separately for male and female trees. The results show that the growth patterns in the two genders were similar during the mid-1950s to 1970s but different in the periods 1931–1940s and 1980–2007. In the period 1980–2007, the mean sensitivity and mean widths of the tree rings were significantly different between the genders (p < 0.05). The climate-growth response in female and male trees was also different. Female trees are sensitive to precipitation in November of the previous year, whereas male trees respond to mean temperature in November of the previous year. The results confirm that climatic sensitivity in male and female trees of dioecious species is different, yet this difference is not stable through time.
65

Climate – Tree-Growth Relationships in Central Sweden : An Evaluation of the Palmer Drought Severity Index as a Tool for Reconstructing Moisture Variability

Labuhn, Inga January 2009 (has links)
<p>A tree-ring width chronology from Scots pine (<em>Pinus sylvestris</em> L.) was constructed from a xeric site in Stockholm to investigate the relationships between climate and tree growth and to reconstruct past moisture variability. The measure of moisture conditions employed here is a self-calibrating Palmer Drought Severity Index (PDSI). The index is derived from temperature, precipitation, and available water capacity of the soil, and assesses the intensity and duration of drought. It is widely used in tree-ring based climate reconstructions, a method which has never before been tested in the Nordic countries.</p><p>The comparison of the Stockholm tree-ring chronology with monthly temperature and precipitation data from a nearby meteorological station shows that tree growth is reduced by high summer temperatures, whereas high precipitation at the beginning of the growing season favours growth. The comparison with a PDSI calculated from this meteorological data shows that negative PDSI values are associated with narrow rings. Although tree growth in the humid climate of central Sweden is generally not limited by precipitation, the trees sampled for this study prove to be sensitive to changes in water supply. Their rings thus provide a record of past moisture variability and enable the reconstruction of precipitation and drought. The transfer function models for the reconstructions are calibrated using linear regression. A detailed verification of the results using the more than 200-year long meteorological record from Stockholm affirms the good model performance. May–June precipitation sums and the July PDSI could be reconstructed back to 1625.</p><p>The Palmer Drought Severity Index is found to be a useful tool in a tree-ring based reconstruction of past moisture variability, approximating the fraction of rainfall which is actually available to the tree, by including soil moisture storage, runoff, and the influence of temperature on evapotranspiration. It cannot completely account for the combined temperature and precipitation forcing of tree growth, and the use of the index does not improve the reconstruction compared to using precipitation alone. However, a reconstruction of both precipitation and the PDSI is possible when selecting an adequate sample site.</p>
66

Dendroclimatology in the San Francisco Peaks region of northern Arizona, USA /

Salzer, Matthew W. January 2000 (has links) (PDF)
Thesis (Ph. D.)--University of Arizona, 2000. / Includes bibliographical references. Also available online.
67

EASTERN U.S. TREE-RING WIDTHS AND DENSITIES AS INDICATORS OF PAST CLIMATE.

CONKEY, LAURA ELIZABETH. January 1982 (has links)
Long-lived trees preserve a record of environmental conditions during their lifetime in the pattern of yearly xylem widths and in changing wood density within and among the increments. Crossdated earlywood, latewood, and total ring widths, and minimum earlywood and maximum latewood densities, from three sites in the mountains of Maine, are analyzed visually and statistically to evaluate their relationships to one another and to external, environmental factors which affect the ring width and density through internal, physiological processes. Maximum density values show highest levels of similarity within and among the three site chronologies, thus implying a good degree of sensitivity to climate; minimum density values, however, showed lowest sensitivity to climate. Two biologically reasonable hypotheses concerning climate--tree growth interactions are proposed: (1) that maximum density is related to spring temperatures prior to its formation; and (2) that maximum density is related to summer water relations as the latewood forms. With the help of response function analysis, simple correlation, and multiple linear regression, these two hypotheses are tested: (1) maxmum density as a single predictor explains up to 37% of spring temperature variance; with earlywood widths at one site, 47% of spring temperature variance is explained; (2) maximum density as a single predictor explains up to 45% of summer temperature variance, 11% of summer precipitation variance, and 23% of the variance of Thornthwaite water deficit values; with total ring widths at one site, 22% of the variance of summer stream runoff is explained. Regression equations were applied to the 201- to 310-year tree-ring records to form reconstructions of these past climatic events. Independent verification testing of the reconstructions strongly validates the relationship between maximum density and spring temperature; the relationship to summer water relations is not as strongly verified, but results encourage further testin of this relationship. Results from this study may be applied both to (1) an increased understanding of relationship of climate to the formation of wood density; and (2) further development of dendroclimatology in mesic regions such as northeastern North America.
68

The Climate of Arizona: Prospects for the Future

Brazel, Anthony J., Fritts, Harold C., Idso, Sherwood B. January 1978 (has links)
Introduction: The climate of any region sets the tempo of indigenous life styles and largely dictates the scale and type of economic activity that can be sustained. In Arizona, we are subject to perhaps more climatic restraints than are many other areas, due to the high air temperatures in summer and the rather low yearly rainfall. But, weather is variable; and its sum total -- climate -- is not unchanging either. Thus, in planning the future direction economic activity should take, prospects for changes in climate should be considered. In this paper we attempt to marshal the best evidence available to outline the possibilities for Arizona's future climate. We hope that the information will prove useful to those who must make the difficult decisions that will shape the character of our state in the years to come.
69

Climate – Tree-Growth Relationships in Central Sweden : An Evaluation of the Palmer Drought Severity Index as a Tool for Reconstructing Moisture Variability

Labuhn, Inga January 2009 (has links)
A tree-ring width chronology from Scots pine (Pinus sylvestris L.) was constructed from a xeric site in Stockholm to investigate the relationships between climate and tree growth and to reconstruct past moisture variability. The measure of moisture conditions employed here is a self-calibrating Palmer Drought Severity Index (PDSI). The index is derived from temperature, precipitation, and available water capacity of the soil, and assesses the intensity and duration of drought. It is widely used in tree-ring based climate reconstructions, a method which has never before been tested in the Nordic countries. The comparison of the Stockholm tree-ring chronology with monthly temperature and precipitation data from a nearby meteorological station shows that tree growth is reduced by high summer temperatures, whereas high precipitation at the beginning of the growing season favours growth. The comparison with a PDSI calculated from this meteorological data shows that negative PDSI values are associated with narrow rings. Although tree growth in the humid climate of central Sweden is generally not limited by precipitation, the trees sampled for this study prove to be sensitive to changes in water supply. Their rings thus provide a record of past moisture variability and enable the reconstruction of precipitation and drought. The transfer function models for the reconstructions are calibrated using linear regression. A detailed verification of the results using the more than 200-year long meteorological record from Stockholm affirms the good model performance. May–June precipitation sums and the July PDSI could be reconstructed back to 1625. The Palmer Drought Severity Index is found to be a useful tool in a tree-ring based reconstruction of past moisture variability, approximating the fraction of rainfall which is actually available to the tree, by including soil moisture storage, runoff, and the influence of temperature on evapotranspiration. It cannot completely account for the combined temperature and precipitation forcing of tree growth, and the use of the index does not improve the reconstruction compared to using precipitation alone. However, a reconstruction of both precipitation and the PDSI is possible when selecting an adequate sample site.
70

Dendroclimatology and Woodland Dynamics on the Volcanic Badlands of Western New Mexico, U.S.A.

Spond, Mark Daniel 01 December 2011 (has links)
My dissertation research addressed woodland dynamics and dendroclimatology on the volcanic badlands of western New Mexico. The research was intended to complement previous studies by: (1) assessing vegetation structure and composition dynamics at El Malpais National Monument between 1948–2010 using repeat photography; (2) improving knowledge of the influence of climate and land use on vegetation dynamics at El Malpais National Monument; (3) providing a unique tree-ring data set from Rocky Mountain juniper growing on the malpais; (4) elucidating relationships between Pacific teleconnections and radial growth in Rocky Mountain juniper; and (5) improving understanding of the dynamic nature of climate in the Southwest. I used tree-ring data from the interior of the Bandera Lava Flow and repeat-photography sequences from a nearby location at the edge of the flow to assess vegetation changes at two ecologically different locations on the malpais. I concluded that noticeable vegetation changes occurred during the 20th and early 21st centuries at the periphery of the Bandera Lava Flow. Vegetation changes at the lava-substrate interface could be linked to human activity, resource management, and drought. I also sampled Rocky Mountain junipers on a lava flow in Cibola National Forest to produce a multi-century tree-ring chronology. The data set is the first Rocky Mountain juniper chronology produced in New Mexico and is one of few conifer chronologies from the Southwest with a significant temperature-growth relationship. Dendroclimatic analyses identified growth relationships with monthly mean temperature, monthly total precipitation, monthly PDSI, and local water year precipitation. Trees appeared most sensitive to climate factors that influence and indicate moisture availability during dry periods of the growing season. Tree-ring data indicated positive relationships between SSTs in the El Niño 3.4 region of the central Pacific Ocean and Rocky Mountain junipers on the malpais. Positive PDO-growth relationships during the cool months prior to current growing season further suggest a link between SSTs in the Pacific Ocean and trees on the badlands. Positive relationships between monthly PNA index values and annual radial growth may result from the large distances between the malpais and PNA centers of activity.

Page generated in 0.0527 seconds