• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 208
  • 129
  • 35
  • 16
  • 14
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 3
  • Tagged with
  • 534
  • 196
  • 145
  • 121
  • 92
  • 83
  • 74
  • 66
  • 65
  • 62
  • 56
  • 55
  • 51
  • 48
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Treatment of Landfill Leachate by Integrated Horizontal-Flow Constructed Wetlands

Chen, Yi-ling 13 October 2006 (has links)
Due to various components within the landfill sites, the water qualityof landfill leachate, which has high consistency of COD, BOD and nutrients, is unsteady. Using traditional sewage treatment plant to treat leachate should be designed and built to fit the unsteady water quality, which is usually time consuming and high expenditured. Therefore, application of constructed wetland treatment systems as altanatives may solve such kinds of problems According to the experimental results of this study, referring to the effect of cleaning the controlling substances, the SSF (sub-surface flow system) constructed wetland system performed better than the FWS (free-water surface system) one, which was because FWS was usually operated in an opening water areas, which exposured to the air causing stink in the inflow site of influent, and meanwhile caused problems of virus-transmitting mosquitoes. . Thus, it was suggested to use SSF system in treating landfill leachate. In this study, we found that the average removal efficiencies of pollutants in the leachate were high in the constructed wetland systmes (phosphate 73%, total phosphorous 70¢H, total nitrogen 57%, NH3-N 77¢H, COD 43% ). In addition, the BOD in the effluent from the systems could reach the outflow standard guideline in Taiwan (30 mg/L). Hence, using constructed wetland systems to solve those problems arisen from landfill leachate is expandable. We also found that the aquatic plant species of reed (Phragmites australis) that we used in this study could not grow well and was invaded by aphid due to the limitary environment in the landfill site and lack of biodiversity, which could not generate a good natural food chain. On the other hand, it was found that the plant species of evergreen (Dracaena sanderiana) could grow healthily and present high removal efficiencies for pollutants. Since the leachate was lack of biodegradable organic carbon sources used for denitrification, in the final test run of this study, we run an experiment of adding organic carbon sourcecs (fructose and molasses) into the constructed wetland systemis to test its effect on denitrification. The experimental results showed that the addition of organic carbon sources could significantly increase the efficiencies of denitrification to let more nitrate removed from the leachate, especially for molasses, which could increase the denitrification efficiency above 90%.
72

A spatial and temporal assessment of factors controlling denitrification in coastal and continental shelf sediments of the Gulf of Mexico

Childs, Carl R. Chanton, Jeffrey P. January 2004 (has links)
Thesis (Ph. D.)--Florida State University, 2004. / Advisor: Dr. Jeff Chanton, Florida State University, College of Arts and Sciences, Dept. of Oceanography. Title and description from dissertation home page (viewed June 16, 2004). Includes bibliographical references.
73

Denitrification Losses In Cropped Soils With Subsurface Drip Irrigation.

Figueroa-Viramontes, Uriel January 1999 (has links)
Denitrification is a microbial process of anaerobic respiration in which nitrate (NO₃⁻) is chemically reduced to gaseous nitrous oxide (N₂0) and molecular N2. Fertilizer N can be lost to the atmosphere through this process. Subsurface drip irrigation may create favorable conditions for denitrification, such as high moisture and NO₃⁻ content. The objectives of this research were to: 1) determine the denitrification rate in drip-. irrigated cauliflower and sweet corn crops; 2) evaluate the effect of soil water tension on the denitrification rate, and; 3) estimate an N balance under subsurface drip irrigation, including denitrification losses. Two field experiments with subsurface drip-irrigated cauliflower were conducted during the 1996-98 winter growing seasons at the Maricopa Agricultural Center, in Maricopa, AZ. An additional study with subsurface drip-irrigated sweet corn was conducted at the Campus Agricultural Center in Tucson, AZ. All the experiments were complete factorial designs with two soil water tension levels (low, high), two levels of N fertilizer (zero, adequate), and three replications. The denitrification rates evaluated at ambient temperature were <12 g N ha⁻¹ d⁻¹ during the cauliflower winter seasons. When soil cores taken during the 1997-98 winter season were incubated at room temperature (24 ±2°C), denitrification rates were five to 50 times higher than the rates evaluated at ambient temperature. The denitrification rate measured at room temperature in the cauliflower winter season was similar to the rate observed in the sweet corn during summer. Soil cores from the cauliflower 1997-98 season that received 100 kg N ha⁻¹ had denitrification rates from 10 to 45 g N ha⁻¹ d⁻¹ ; when these cores were amended with additional soluble carbon, the denitrification rate increased to 800 to 3500 g N ha⁻¹ d⁻¹. All of the three experiments showed higher denitrification rates at the end of the season. This trend coincided with increases in denitrifying enzyme activity and soluble organic carbon. The denitrification loss of fertilizer N was <1% in cauliflower and almost 2% in summer sweet corn, when irrigated at the higher soil water tension. Lower soil water tension did not increase the denitrification rate in the winter, but in the summer the loss of N due to denitrification increased to almost 6% of the applied N.
74

Can nitrifier-denitrification be tracked in cultures and soils using nitrous oxide isotopomer methods?

Barrett, Gaynor Louise January 2012 (has links)
Nitrifier denitrification is a poorly quantified microbial process leading to emissions of N2O from soils. Nitrous oxide emissions, particularly from agricultural soils, are currently being targeted for reduction due to the contribution of this gas to anthropogenic climate change. Measurements specific to nitrifier-denitrification are hampered by poor culturability of many of the strains involved, and the inability of single isotope labelling methods to distinguish it from denitrification carried out by other organisms, dual-labelling approaches and evidence form pure cultures suggest that its contribution to nitrous oxide emissions may be large. Environmental conditions favouring the pathway are unknown, leading to difficulties in mitigation or modelling. In this thesis data from both dual-labelling isotopic techniques and isotopomer measurements of the nitrous oxide emitted are used to determine whether isotopomer techniques can quantify nitrifier-denitrification in situ, and the conditions under which nitrous oxide emissions from the pathway are increased are investigated. Data is also presented on site preference (isotopomer ratio) from ammonia oxidation in several Nitrosospira strains for which this has previously not been measured. The capacity of Nitrosospira strains in pure culture to reduce N2O to N2, an environmentally neutral product of the nitrogen cycle, are investigated. Site preference results from this research suggest that nitrifier denitrification cannot be distinguished from heterotrophic denitrification by site preference, indicating that previously published data stating proportional outputs of N2O from dentrification may overestimate heterotrophic contributions. Several Nitrosospira strains are found to be capable of a reduction step from N2O to N2 in pure culture conditions. Nitrifier denitrification is found to respond to environmental factors of soil N-level, pH and rainfall events, and changes in site preference also occur under these conditions. Site preference is linked to microbial phylogeny for the strains of Nitrosospira tested, indicating a possible effect of enzyme structure above pathway level determination.
75

Nitrous Oxide in Himmerfjärden: Seasonal Variability in Production Rates and Fluxes

Olsson, Camilla January 2015 (has links)
No description available.
76

Two Stage Membrane Biofilm Reactors for Nitrification and Hydrogenotrophic Denitrification

Hwang, Jong Hyuk 09 February 2010 (has links)
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrogen removal was attempted using MBfR in various configurations - nitrification, denitrification and consecutive nitrification and denitrification. Effects of loading rate and dissolved oxygen on nitrification performance were primarily investigated in a stand-alone nitrifying MBfR. Specific nitrification rate increased linearly with specific loading rate, up to the load of 3.5 g N/m²d. Beyond that load, substrate diffusion limitation inhibited further increase of specific nitrification rate. 100% oxygen utilization was achievable under limited oxygen supply condition. Effects of mineral precipitation, dissolved oxygen and temperature on hydrogenotrophic denitrification were investigated in a stand-alone denitrifying MBfR. Mineral precipitation, caused by intended pH control, caused the deterioration of denitrification performance by inhibiting the diffusion of hydrogen and nitrate. Operating reactor in various dissolved oxygen conditions showed that the denitrification performance was not affected by dissolved oxygen in MBfR. Optimum temperature of the hydrogenotrophic denitrification system was around 28°C. Total nitrogen removal in a two-step MBfR system incorporating sequential nitrification and hydrogen-driven autotrophic denitrification was investigated in order to achieve nitrogen removal by autotrophic bacteria alone. Long-term stable operation, which proved difficult in previous studies due to excessive biofilm accumulation in autotrophic denitrification systems, was attempted by biofilm control. Nitrification performance was very stable throughout the experimental periods over 200 days. Performance of autotrophic denitrification was maintained stably throughout the experimental periods, however biofilm control by nitrogen sparging was required for process stability. Biofilm thickness was also stably maintained at an average of 270 µm by the gas sparging biofilm control. According to the cost analysis of denitrifying MBfR, hydrogenotrophic denitrification can be an economical tertiary treatment option compared to conventional denitrifying filter although its economic feasibility highly depends on the cost of hydrogen gas. Although this study was conducted in a lab-scale, the findings from this study can be a valuable stepping stone for larger scale application and open the door for system modifications in future.
77

Comparison of Ethinylestradiol and Nitrogen Removal in a Conventional and Simultaneous Nitrification-Denitrification Membrane Bioreactor

Paetkau, Michelle 12 April 2011 (has links)
The purpose of this thesis was to compare ethinylestradiol (EE2) and nitrogen removal in a conventional membrane bioreactor (C-MBR) and a simultaneous nitrification-denitrification membrane bioreactor (SND-MBR). Two MBRs were operated in parallel for 450 days; various MBR operating parameters, total nitrogen removal, and estrogenic activity removal (EA) were measured. The SND-MBR was able to remove 59% of influent TN with an additional 21% removed via sludge wasting; the C-MBR had a TN removal efficiency of only 31%. The C-MBR and SND-MBR removed 57% and 58% of influent EA, respectively. Biodegradation was the dominant removal mechanism for both reactors with KBIO coefficients of 1.5 ± 0.6 and 1.6 ± 0.4 days-1 for the C-MBR and the SND-MBR, respectively. Adsorption removed approximately 1% of influent EA in each reactor. This indicates that SND was able remove greater amounts of TN with no observable impact on EA reduction and membrane operations.
78

The use of naturally generated volatile fatty acids for pesticide removal during the denitrification process

He, Xuan (Sarah) January 2006 (has links)
The effect of naturally produced volatile fatty acids (VFAs) on the removal of 2, 4-D from a wastewater during the denitrification process was studied in this thesis. The VFAs were generated from an anaerobic digester using soya flour solution as a synthetic feed. The digester was operated at an SRT and HRT of 10 days. The pH (4.8 ± 0.2) and temperature (32 ± 3 ℃) of the digester were not controlled. A mean VFA concentration of 3153 ± 801 mg/L was achieved with acid speciation results of acetic (51.4 %), propionic (27.5 %), n-butyric (19.6 %) and iso-valeric (1.4 %). The specific VFA production rate was 0.014 mg VFA/mg VSS/day. The extent of the digestion process converting the substrate from a particulate to soluble form was evaluated as the specific TOC solubilization rate (0.007 mg TOC/mg VSS/day), soluble COD production rate (0.022 mg SCOD/mg VSS/day) and percent VSS reduction (14 %). The low solubilization rate is possibly due to high feed solids (3.4%) which led to a heavily overloaded bioreactor. It also suggests that the particulate substrate was not entirely amenable to solubilization. The acclimation of 2, 4-D degrading bacteria was developed successfully in an SBR fed with sewage and 2, 4-D (30-100 mg/L) as carbon and energy sources. A mean MLSS of 3653 ± 547 mg/L and an SRT of 20 ± 9 days were observed during the research period. The settleability of the SBR sludge was excellent evidenced by a low sludge volume index (SVI) of 101 ± 50 mL/g and less than 5 mg/L of effluent suspended solids. The specific 2, 4-D degradation rate was 0.046 ± 0.018 mg/mg MLSS/day. However, the removal of 2, 4-D during 60 minutes of non-aerated phase was negligible while more than 90 % of the 2, 4-D was removed within 240 minutes of the aerated phase. The successful degradation of 2, 4-D is related to the length of the acclimation period, as the acclimation period increased, the specific biodegradation rate increased. A biosorption study using ultrasound pre-treatment of the SBR acclimated biomass suggested that less than 10 % of the removal of 2, 4-D was due to biosorption, while more than 90 % removal of the 2, 4-D was likely due to biodegradation. Denitrification batch tests (using SBR-acclimated biomass) demonstrated that the addition of a digester effluent rich in naturally-produced VFAs increased both the 2 specific denitrification rate and the 2, 4-D degradation efficiency, as compared to that using 2, 4-D as a sole carbon source. In particular, the specific denitrification rates increased from 0.0119 ± 0.0039 to 0.0192 ± 0.0079 to 0.024 ± 0.003 g NO₃-N/g VSS per day, when using 2, 4-D alone, 2, 4-D plus natural VFAs and natural VFAs alone as carbon sources. The percent 2, 4-D removal increased from 28.33 ± 11.88 using 2, 4-D alone as a carbon source to 54.17 ± 21.89 using 2, 4-D plus natural VFAs as carbon sources. The specific 2, 4-D degradation rate and 2, 4-D removal efficiency of unacclimated biomass were 2.0 to 2.5 times less than those of the acclimated biomass. Natural VFAs and synthetic VFAs were found to be identical in denitrification batch tests in terms of their use as a carbon source. The mean specific denitrification and VFA-C consumption rates as well as the mean specific 2, 4-D degradation rate derived from experiments using natural VFAs and 2, 4-D as carbon sources were close to the valuess from experiments using synthetic VFAs and 2, 4-D as carbon sources. Further exploration of 2, 4-D degradation behaviour with pulsed additions of NO₃-N did not find further significant 2, 4-D removal, although almost all of NO₃-N was used by the end of the experimental run due to endogenous carbon sources used for cell maintenance and growth. However, the higher the concentration of biomass used in the denitrification batch system, the larger the amount of 2, 4-D degraded and the faster the VFA-C and NO₃-N were consumed. Further research with respect to optimisation of the acid-phase anaerobic digestion process (e.g. to adjust SRT and HRT or to lower the solid content of synthetic feed) would improve the specific VFA production rate and the solubilization rate. More research on the SBR could be carried out to investigate its maximum 2, 4-D removal capability as well as the removal of other structurally related herbicides. Attempts could be made to stimulate the growth of denitrifiers in the SBR (e.g. to add certain amounts of NO₃-N according to proper C: N ratios or to increase the length of non-aerated time). More microbiological studies of 2, 4-D degrading bacteria may also be helpful to understand the combined SBR/denitrification and 2, 4-D degradation process. More theoretical aspects of modelling kinetics could be developed to apply the combined process in-situ at 2, 4-D contaminated sites.
79

Denitrification in small reservoirs: understanding nitrogen removal across an agricultural watershed

2015 February 1900 (has links)
As the world’s increasing human population demands greater agricultural intensity, concerns regarding environmental nutrient loading are also rising. Landowners in the Tobacco Creek Model Watershed (TCMW) in southern Manitoba, Canada, have implemented beneficial management practices to reduce nutrient loading to surface waters. Among these practices is a network of small reservoirs that have been shown to reduce nutrient concentrations downstream. It is unclear what is contributing to this ecosystem service, but bacterial denitrification is thought to be important. To understand the role of these reservoirs in excess nitrate removal and assess how this ecosystem service can be optimized, denitrification activity in reservoirs and stream pools of the watershed was measured via the chloramphenicol-amended acetylene block technique. Results indicated that denitrification activity was positively correlated with measured nitrate concentrations and sediment organic carbon (SOC), and negatively correlated with sediment particle size and pH. Regression trees typically identified nitrate as the primary node in partitioning denitrification activity. Importantly, reservoirs exhibited higher denitrification activity and were at times less likely to be nitrate-saturated than stream pools. This finding was attributed mainly to higher levels of SOC, and lower concentrations of dissolved oxygen found in reservoirs. Nitrate was added to a set of samples to test for nitrate saturation, which is an indicator of poor ecological status, as nitrate concentrations exceed the denitrification capacity of microbes. Almost half of measurements (49%) demonstrated nitrate saturation, indicative of the need for additional remediation activity in the watershed. Classification trees suggested a threshold for nitrate saturation across sites at 0.68 mg L-1 NO3 + NO2. Findings from this research reveal that reservoirs not only improve nitrate removal capacity, but could inform the proposed construction of additional reservoirs in the TCMW. Understanding nutrient retention in this system could also have implications for downstream ecosystems such as Lake Winnipeg; an intensely eutrophic lake that has become a high priority area for remediation.
80

The effect of different carbon sources on reduction of nitrate in effluent from the mining industry : Olika kolkällors inverkan på reduktion av nitrat i processvatten från gruvindustrin

Lindberg, Hanna January 2014 (has links)
Mine water effluent contains high levels of nitrogen due to residues from undetonated ammonium- nitrate based explosives. Excess nitrogen in aquatic ecosystems can cause eutrophication. Within a mining area, tailings and clarification ponds have the potential to reduce nitrogen levels by biological uptake of nitrogen into growing algae and denitrification in pond sediments. A previous study at the LKAB Kiruna mine investigated the potential nitrogen removal within the tailings and clarification ponds. The study showed that about 1-10 tonnes of nitrogen were removed each year, and that the removal by denitrification was limited by carbon.  The aim of this master thesis was to investigate if additions of different carbon compounds could improve the denitrification in sediment from the clarification pond at the LKAB Kiruna mine site. It was also of interest to see if the composition of the edogenous microbial community involved in nitrogen reduction changed after the treatments. Samples of sediment and pond water were collected in January 2014 and a laboratory experiment was set up where sediment and water was incubated with carbon additions under anoxic conditions. Three different carbon sources were tested: sodium acetate, hydroxyethyl cellulose and green algae. Pond water without additional carbon was used as a control. The sediment was incubated eight weeks at 20 °C with weekly water exchange and carbon addition. The removed water was analyzed to determine the amount of nitrogen removed. At start and after ending the incubation, potential denitrification in the sediment was determined with an enzymatic assay and the size of the genetic potential of nitrogen reduction was determined.  At start, the enzymatic assay showed that the potential denitrification rate in the sediment of the clarification pond at the LKAB Kiruna mine was not immediately enhanced by addition of carbon. However, during the incubation the removal of nitrate was enhanced by external carbon sources. Algae were a good carbon source, since the denitrifying community grew, the potential denitrification increased four times after incubation and the removal of nitrate was next to complete in the end of the incubation. The addition of cellulose also enhanced the denitrification activity to some extent and the abundance of genes coupled to denitrification increased. Further studies are needed to assess the practical use of external carbon sources like algae and plant material and how they would function in and potentially also affect a large, cold and complex system like the LKAB mining site.

Page generated in 0.1132 seconds