• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultra-structural aspects of human enamel surface pretreatments

Zhu, Jiajun, 朱嘉珺 January 2014 (has links)
abstract / Dentistry / Doctoral / Doctor of Philosophy
2

Studies on the distribution and ultrastructure of the main components in human dental enamel

Angmar-Månsson, Birgit, January 1970 (has links)
Akademisk avhandling- Karölinska Institutet, Stockholm. / Extra t.p., with thesis statement, inserted. Bibliography: p. 27-30.
3

The effect of acid etching on remineralization of incipient caries lesions : a micro-ct study

Yeslam, Hanin E. January 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Etching of enamel caries lesions has been demonstrated to enhance remineralization. However, this effect reaches a plateau after a period of time. This study aimed at investigating the effectiveness of additional acid etching on remineralization. Forty 1 mm × 2 mm human enamel blocks with chemically induced artificial incipient lesions were used. Ten specimens were randomly selected at the end of demineralization for transverse microradiography (TMR) analysis. The remaining specimens were then divided into three groups (n = 10). Group A was remineralized by a pH cycling system with 1100 ppm sodium fluoride for 20 days. In group B, the specimens were etched with 35-percent phosphoric acid for 30 s and then remineralized. Group C was remineralized by same procedure as group B plus and given an additional acid etch after 10 days of remineralization. Mineral density was measured by x-ray microtomography (µ-CT). The volumetric mineral content [VM (µm3×105)] was determined between 91 and 0-wt%. The µ-CT % mineral recovery (%) was calculated using the formula 100×(remineralize VM - demineralization VM) / (sound VM - demineralization VM). One-hundred-μm sections of demineralized and remineralized specimens were used to assess the mineral loss (IML: vol%×µm) and lesion depth (µm) using TMR. The three groups showed no significant difference in mineral change or mineral content for µ-CT or TMR lesion depth. The TMR IML showed a significant difference between the demineralized specimens and the three remineralized groups. The correlation between TMR IML and TMR lesion depth was 0.66 (p < 0.0001). The µ-CT percent mineral recovery from demineralization was correlated with neither TMR IML nor TMR lesion depth. When evaluated with µ-CT, the twice-acid-etched group presented lower mineral gain values than the group etched only once with acid. Also, the twice-etched group presented lower mineral gain and greater TMR IML compared with the non-acid etch group. TMR images revealed reduction of surface layer in the acid-etched groups, especially in the twice-etched group, in which significant reduction or loss of surface layer occurred. Based on these results, we conclude that additional acid etching with 35-percent phosphoric acid does not enhance remineralization compared with a single application of acid etching. We believe that the viable existence of the surface layer is essential for remineralization of the lesion. Further investigations into the accuracy of µ-CT to detect minute mineral changes in incipient caries lesions are probably needed.
4

Effect of fluoride and abrasives on artificial enamel caries lesions

Nassar, Hani M., 1979- January 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Hypothesis: The interaction between the abrasive level and fluoride concentration of dentifrice slurries modulates the surface loss (SL) and remineralization of incipient enamel caries (IEC). Methods: Three types of IEC were created and six experimental slurries with different combinations of fluoride content and abrasive level were tested. In experiment 1, the three IEC were subjected to brushing (with experimental slurries) and remineralization cycles for 5 days. Fluoride concentrations (0 and 275 ppm as NaF) and abrasive levels (Low and High) were tested. SL was determined by optical profilometry at baseline and after 1, 3, and 5 days. In experiment 2, changes in IEC mineral content (Δ(ΔZ)C) and depth (ΔLC) were investigated at baseline and after the 5-day cycling with transverse microradiography. In experiments 3 and 4, SL of MeC and CMC lesions were further studied, respectively; testing not only fluoride concentration (275 and 1250 ppm as NaF) and abrasivity (low and high) of the slurry, but also the brushing frequency (1x, 2x, and 3x/day). Brushing-remineralization cycles were performed for 7 days. Statistical analyses were performed at 5% significance level. Results: Experiment 1: overall, brushing with the high-abrasive slurry caused more SL than with the low-abrasive. For CMC and MeC lesions, 0 ppm F had more SL than 275 ppm F only after day 3. Fluoride had no effect on the SL of HEC lesions. Experiment 2: fluoride and abrasives did not have a significant effect on IEC. HEC had significantly lower Δ(ΔZ)C than CMC and MeC, with CMC and MeC not differing from each other. Lesion type had no effect on ΔLC. Experiment 3: brushing CMC lesions 3x/day with 1250 ppm F increased SL compared to 1x/day, after 5 and 7 days. Study 4: brushing MeC lesions with high abrasive slurry containing 1250 ppm F increased SL after 5 and 7 days. Conclusions: The IEC tested showed different SL and remineralization behaviors. The fluoride content and abrasive level of the toothpaste showed to be relevant modulating the SL of enamel caries lesions as well as their remineralization behavior.

Page generated in 0.1116 seconds