• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 14
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Approaches and Considerations Towards a Safe and Effective Adeno-Associated Virus Mediated Therapeutic Intervention for GM1-Gangliosidosis: A Dissertation

Weismann, Cara M. 05 August 2014 (has links)
GM1 gangliosidosis is a lysosomal storage disorder caused by a deficiency in the catabolizing enzyme β-galactosidase (βgal). This leads to accumulation of GM1-ganglioside (GM1) in the lysosome inducing ER stress and cell death. GM1 gangliosidosis is primarily a disorder of the central nervous system (CNS) with peripheral organ involvement. In this work we report two major findings, 1) systemic treatment of GM1 gangliosidosis with an adenoassociated virus (AAV9) encoding mouse-βgal (mβgal) in a GM1 gangliosidosis mouse model (βGal-/-), and 2) an investigation into an intracranial injection of a therapeutic AAVrh8 encoding mβgal. Systemic treatment of GM1 gangliosidosis with AAV9 resulted in a moderate expression of enzyme in the CNS, reduction of GM1 storage, significant retention of motor function and a significant increase in lifespan. Interestingly, the therapeutic effect was more robust in females. Intracranial injections of AAVrh8 vector expressing high levels of βgal resulted in enzyme spread throughout the brain, significant retention of motor function and a significant increase in lifespan. Histological alterations were also found at the injection site in both βGal-/- and normal animals. We constructed a series of vectors with a range of decreasing enzyme expression levels to investigate the cause for the unanticipated result. Microarrays were performed on the injection site and we showed that a lower expressing AAVrh8-mβgal vector mitigated the negative response. Intracranial injection of this newly developed vector was shown to clear lysosomal storage throughout the CNS of βGal-/- mice. Taken together, these studies indicate that a combined systemic and fine-tuned intracranial approach may be the most effective in clearing lysosomal storage completely in the CNS while providing therapeutic benefit to the periphery.
12

Gene Therapy for Amyotrophic Lateral Sclerosis: An AAV Delivered Artifical MicroRNA Against Human SOD1 Increases Survival and Delays Disease Progression of the SOD1<sup>G93A</sup> Mouse Model: A Dissertation

Stoica, Lorelei I. 07 December 2015 (has links)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motor neurons, resulting in progressive muscle weakness, atrophy, paralysis and death within five years of diagnosis. About ten percent of cases are inherited, of which twenty percent are due to mutations in the superoxide dismutase 1 (SOD1) gene. Since the only FDA approved ALS drug prolongs survival by just a few months, new therapies for this disease are needed. Experiments in transgenic ALS mouse models have shown that decreasing levels of mutant SOD1 protein alters and in some cases entirely prevents disease progression. We explored this potential therapeutic approach by using a single stranded AAV9 vector encoding an artificial microRNA against human SOD1 injected bilaterally into the cerebral lateral ventricles of neonatal SOD1G93A mice. This therapy extended median survival from 135 to 206 days (a 50% increase) and delayed hind limb paralysis. Animals remained ambulatory until endpoint, as defined by a sharp drop in body weight. Treated animals had a reduction of mutant human SOD1 mRNA levels in upper and lower motor neurons. As compared to untreated SOD1G93A mice, the AAV9 treated mice also had significant improvements in multiple parameters including the number of motor neurons, diameter of ventral root axons, and degree of neuroinflammation in the spinal cord. These studies clearly show that an AAV9-delivered artificial microRNA is a translatable therapeutic approach for ALS.
13

A Walk on the Fine Line Between Reward and Risk: AAV-IFNβ Gene Therapy for Glioblastoma: A Dissertation

Guhasarkar, Dwijit 22 July 2016 (has links)
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The current standard-of-care treatment including surgery, radiation and temozolomide (TMZ) chemotherapy does not prolong the survival satisfactorily. Here we have tested the feasibility, efficacy and safety of a potential gene therapy approach using AAV as gene delivery vehicle for treatment of GBM. Interferon-beta (IFNβ) is a cytokine molecule also having pleiotropic anticancerous properties. Previously it has been shown by our group that AAV mediated local (intracranial) gene delivery of human IFNβ (hIFNβ) could be an effective treatment for non-invasive human glioblastoma (U87) in orthotopic xenograft mouse model.But as one of the major challenges to treat GBM effectively in clinics is its highly invasive property, in the current study we first sought to test the efficacy of our therapeutic model in a highly invasive human GBM (GBM8) xenograft mouse model. One major limitation of using the xenograft mouse model is that these mice are immune-compromised. Moreover, as IFNβ does not interact with cross-species receptors, the influence of immune systems on GBM remains largely untested. Therefore to test the therapeutic approach in an immune-competent mouse model, we next treated a syngeneic mouse GBM model (GL261) in an immune-competent mouse (C57B6) with the gene encoding the species-matched IFNβ (mIFNβ). We also tested if combination of this IFNβ gene therapy with the current standard chemotherapeutic drug (TMZ) is more effective than any one of the therapeutic modes alone. Finally, we tested the long term safety of the AAV-mIFNβ local gene therapy in healthy C57B6 mice. Next, we hypothesized that global genetic engineering of brain cells expressing secretory therapeutic protein like hIFNβ could be more beneficial for treatment of invasive, migratory and distal multifocal GBM. We tested this hypothesis using systemic delivery of AAV9 vectors encoding hIFNβ gene for treatment of GBM8 tumor in nude mice. Using in vivo bioluminescence imaging of tumor associated firefly luciferase activity, long term survival assay and histological analysis of the brains we have shown that local treatment of AAV-hIFNβ for highly invasive human GBM8 is therapeutically beneficial at an early growth phase of tumor. However, systemic delivery route treatment is far superior for treating multifocal distal GBM8 tumors. Nonetheless, for both delivery routes, treatment efficacy is significantly reduced when treated at a later growth phase of the tumor. In syngeneic GL261 tumor model study, we show that local AAV-mIFNβ gene therapy alone or in combination with TMZ treatment can provide significant survival benefit over control or only TMZ treatment, respectively. However, the animals eventually succumb to the tumor. Safety study in the healthy animals shows significant body weight loss in some treatment groups, whereas one group shows long term survival without any weight loss or any noticeable changes in the external appearances. However, histological analysis indicates marked demyelinating neurotoxic effects upon long term exposures to mIFNβ over-expressions in brain. Overall, we conclude from this study that AAV-IFNβ gene therapy has great therapeutic potential for GBM treatment in future, but the therapeutic window is small and long term continuous expression could have severe deleterious effects on health.
14

Recombinant AAV gene therapy and delivery for Alzheimer's disease

Carty, Nikisha Christine. January 2009 (has links)
Dissertation (Ph.D.)--University of South Florida, 2009. / Title from PDF of title page. Document formatted into pages; contains 193 pages. Includes vita. Includes bibliographical references.

Page generated in 0.0412 seconds